Buch, Englisch, 480 Seiten, Format (B × H): 190 mm x 249 mm, Gewicht: 1025 g
An Experimentalist's View
Buch, Englisch, 480 Seiten, Format (B × H): 190 mm x 249 mm, Gewicht: 1025 g
ISBN: 978-0-470-01318-2
Verlag: Wiley
Vom fortgeschrittenen Studenten bis zum erfahrenen Projektleiter: Dieser Band spricht einen sehr umfangreichen Leserkreis an mit den Ziel, Anwendungsmoglichkeiten der Quantenmechanik auf eine Vielzahl von Fragen aus dem Forschungsalltag durchschaubar zu machen. Gut geeignet ist das Buch auch fur Studenten und Dozenten, die im Rahmen einer einschlagigen Vorlesung ihr Hintergrundwissen vertiefen wollen.
Autoren/Hrsg.
Weitere Infos & Material
Preface.
Chapter 1: The Role of Theory in the Physical Sciences.
1.0 Introduction.
1.1 What is the role of theory in science?
1.2 The gas laws of Boyle and Gay-Lussac.
1.3 An absolute zero of temperature.
1.4 The gas equation of Van der Waals.
1.5 Physical laws.
1.6 Laws, postulates, hypotheses, etc.
1.7 Theory at the end of the 19th century.
1.8 Bibliography and further reading.
Chapter 2: From Classical to Quantum Mechanics.
2.0 Introduction.
2.1 The motion of the planets: Tycho Brahe and Kepler.
2.2 Newton, Lagrange and Hamilton.
2.3 The power of classical mechanics.
2.4 The failure of classical physics.
2.5 The black-body radiator and Planck’s quantum hypothesis.
2.6 The photoelectric effect.
2.7 The emission spectra of atoms.
2.8 de Broglie’s proposal.
2.9 The Schrödinger equation.
2.10 Bibliography and further reading.
Chapter 3: The Application of Quantum Mechanics.
3.0 Introduction.
3.1 Observables, operators, eigenfunctions and eigenvalues.
3.2 The Schrödinger method.
3.3 An electron on a ring.
3.4 Hückel’s (4N + 2) rule: aromaticity.
3.5 Normalisation and orthogonality.
3.6 An electron in a linear box.
3.7 The linear and angular momenta of electrons confined within a one-dimensional box or on a ring.
3.8 The eigenfunctions of different operators.
3.9 Eigenfunctions, eigenvalues and experimental measurements.
3.10 More about measurement: the Heisenberg uncertainty principle.
3.11 The commutation of operators.
3.12 Combinations of eigenfunctions and the superposition of states.
3.13 Operators and their formulation.
3.14 Summary.
3.15 Bibliography and further reading.
Chapter 4: Angular Momentum.
4.0 Introduction.
4.1 Angular momentum in classical mechanics.
4.2 The conservation of angular momentum.
4.3 Angular momentum as a vector quantity.
4.4 Orbital angular momentum in quantum mechanics.
4.5 Spin angular momentum.
4.6 Total angular momentum.
4.7 Angular momentum operators and eigenfunctions.
4.8 Notation.
4.9 Some examples.
4.10 Bibliography and further reading.
Chapter 5: The Structure and Spectroscopy of the Atom.
5.0 Introduction.
5.1 The eigenvalues of the hydrogen atom.
5.2 The wave functions of the hydrogen atom.
5.3 Polar diagrams of the angular functions.
5.4 The complete orbital wave functions.
5.5 Other one-electron atoms.
5.6 Electron spin.
5.7 Atoms and ions with more than one electron.
5.8 The electronic states of the atom.
5.9 Spin-orbit coupling.
5.10 Selection rules in atomic spectroscopy.
5.11 The Zeeman effect.
5.12 Bibliography and further reading.
Chapter 6: The Covalent Chemical Bond.
6.0 Introduction.
6.1 The binding energy of the hydrogen molecule.
6.2 The Hamiltonian operator for the hydrogen molecule.
6.3 The Born–Oppenheimer approximation.
6.4 Heitler and London: The valence bond (VB) model.
6.5 Hund and Mulliken: the molecular orbital (MO) model.
6.6 Improving the wave functions.
6.7 Unification: Ionic structures and configuration interaction.
6.8 Electron correlation.
6.9 Bonding and antibonding Mos.
6.10 Why is there no He–He Bond?
6.11 Atomic orbital overlap.
6.12 The Homonuclear diatomic molecules from lithium to fluorine.
6.13 Heteronuclear diatomic molecules.
6.14 Charge distribution.
6.15 Hybridisation and resonance.
6.16 Resonance and the valence bond theory.
6.17 Molecular geometry.
6.18 Computational developments.
6.19 Bibliography and further reading.
Chapter 7: Bonding, Spectroscopy and Magnetism in Transition-Metal Complexes.
7.0 Introduction.
7.1 Historical development.
7.2 The crystal field theory.
7.3 The electronic energy levels of transition-metal complexes.
7.4 The electronic spectroscopy of transition-metal complexes.
7.5 Pairing energies; low-spin and high-spin complexes.
7.6 The magnetism of transition-metal complexes.
7.7 Covalency and the ligand field theory.
7.8 Bibliography and further reading.
Chapter 8: Spectroscopy.
8.0 The interaction of radiation with matter.
8.1 Electromagnetic radiation.
8.2 Polarised light.
8.3 The electromagnetic spectrum.
8.4 Photons and their properties.
8.5 Selection rules.
8.6 The quantum mechanics of transition probability.
8.7 The nature of the time-independent interaction.
8.8 Spectroscopic time scales.
8.9 Quantum electrodynamics.
8.10 Spectroscopic units and notation.
8.11 The Einstein coefficients.
8.12 Bibliography and further reading.
Chapter 9: Nuclear Magnetic Resonance Spectroscopy.
9.0 Int