Grundkurs Biomathematik | E-Book | sack.de
E-Book

E-Book, Deutsch, 333 Seiten, eBook

Grundkurs Biomathematik

Mathematische Modelle in Biologie, Biochemie, Medizin und Pharmazie mit Computerlösungen in Mathematica
1995
ISBN: 978-3-322-82963-4
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark

Mathematische Modelle in Biologie, Biochemie, Medizin und Pharmazie mit Computerlösungen in Mathematica

E-Book, Deutsch, 333 Seiten, eBook

ISBN: 978-3-322-82963-4
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark



Grundkurs Biomathematik jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1 Wiederholungen und Einführung in Mathematica.- 1.1 Erste Auswertung von Beobachtungsdaten mit Mathematica, grafische Darstellungen.- 1.2 Quadratische Funktionen und Mathematica.- 1.3 Komplexe Zahlen.- 1.4 Elementare Funktionen.- 1.5 Wiederholung zur Differential- und Integralrechnung.- 1.6 Kurvendiskussion mit Mathematica.- 1.7 Reihenentwicklungen mit Mathematica, Taylorreihen.- 2 Wachstumsmodelle. Gewöhnliche Differentialgleichungen mit einer unabhängigen Variablen.- 2.1 Exponentielles Wachstum.- 2.2 Wachstum mit Sättigungsverhalten. Logistisches Wachstum. Verhulstkurve. Gleichgewichte und Stabilität in mathematischen Modellen.- 2.3 Verzögerungsmodelle. Dynamische Krankheiten in der Physiologie.- 3 Lineare Gleichungssysteme.- 3.1 Einführung.- 3.2 Matrizen.- 3.3 Determinanten.- 3.4 Inverse Matrizen.- 3.5 Lösungsstruktur linearer Gleichungssysteme.- 3.6 Eigenwerte und Eigenvektoren.- 3.7 Anwendungen in der Populationsgenetik.- 4 Populationen mit Wechselwirkungen. Systeme gewöhnlicher Differentialgleichungen.- 4.1 Das Räuber-Beute-Modell von Lotka-Volterra.- 4.2 Ein Räuber-Beute-Modell mit Grenzzyklus.- 4.3 Konkurrenzverhalten zweier Arten mit gleicher Nahrungsquelle. Volterrasches Exklusionsprinzip.- 4.4 Oszillierende chemische und biochemische Systeme. Die Belousov-Zhabotinskii-Reaktion.- 4.5 Erregbarkeit von Nervenmembranen im Differentialgleichungsmodell. Das FitzHugh-Namugo-Modell in der Hodgkin-Huxley-Theorie.- 5 Dynamik von Infektionskrankheiten.- 5.1 Die SEIR-Klasseneinteilung.- 5.2 Untersuchung des SIR-Modells.- 5.3 Anwendung des SIR-Modells auf Influenza und Pest.- 6 Kompliziertere Anwendungen mit Computerlösungen.- 6.1 Michaelis-Menten-Theorie in der Enzymkinetik. Unterschiedliche Zeitskalen.- 6.2 Rückkopplungsmechanismen im Zusammenwirken vonmRNA, Enzymen und Proteinen.- 6.3 Schwarze Löcher in der Biologie.- 7 Räumlich-zeitliche Wirkungsausbreitung. Partielle Differentialgleichungen.- 7.1 Diffusions- und Wärmeleitungsgleichung.- 7.2 Reaktions-Diffusions-Gleichungen. Wellenförmige Wirkungsausbreitung.- 7.3 Fourierreihen. Ein Rand-Anfangswert-Problem.- 8 Statistik.- 8.1 Statistische Maßzahlen. Berechnungen und grafische Darstellungen mit Mathematica.- 8.2 Diskrete und stetige Zufallsgrößen, Realisierung von Zufallsgrößen als „verallgemeinertes Würfeln“, Unabhängigkeit.- 8.3 Erwartungswert, Varianz und Verteilungsfunktion.- 8.4 Normalverteilung.- 8.5 Realisierung von Zufallsgrößen, Zufallsgeneratoren und Ursachen zum Auftreten von Normalverteilungen.- 8.6 Binomialverteilung.- 8.7 Poissonverteilung.- 8.8 Chi-Quadrat, F- und Student-t-Verteilung.- 8.9 Konfidenzintervalle.- 8.10 Der t-Test nach Student, weitere Tests zu normalverteilten Ausgangsdaten.- 8.11 Der Chi-Quadrat-Anpassungstest.- 8.12 Der Vierfelder-Chi-Quadrat-Test.- 8.13 Der Kohnogoroff-Smirnoff-Test.- 8.14 Varianzanalyse.- 8.15 Lineare Regression, Kovarianzkoeffizient.- 8.16 Nichtlineare Regression.- 9 Fraktale.- 9.1 Von den „Monsterkurven der Analysis“ zu den Fraktalen.- 9.2 Juliamengen und Mandelbrotmenge.- 9.3 Komplexe Cantorsche Mengen.- Anhang: Technische Hinweise zur Arbeit mit Mathematica.- Literatur.- Stichwortverzeichnis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.