Gupta / Schmoll / Herrera-Estrella | Biotechnology and Biology of Trichoderma | E-Book | sack.de
E-Book

E-Book, Englisch, 650 Seiten

Gupta / Schmoll / Herrera-Estrella Biotechnology and Biology of Trichoderma


1. Auflage 2014
ISBN: 978-0-444-59594-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 650 Seiten

ISBN: 978-0-444-59594-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Biotechnology and Biology of Trichoderma serves as a comprehensive reference on the chemistry and biochemistry of one of the most important microbial agents, Trichoderma, and its use in an increased number of industrial bioprocesses for the synthesis of many biochemicals such as pharmaceuticals and biofuels. This book provides individuals working in the field of Trichoderma, especially biochemical engineers, biochemists and biotechnologists, important information on how these valuable fungi can contribute to the production of a wide range of products of commercial and ecological interest. - Provides a detailed and comprehensive coverage of the chemistry, biochemistry and biotechnology of Trichoderma, fungi present in soil and plants - Includes most important current and potential applications of Trichoderma in bioengineering, bioprocess technology including bioenergy & biofuels, biopharmaceuticals, secondary metabolites and protein engineering - Includes the most recent research advancements made on Trichoderma applications in plant biotechnology and ecology and environment

Gupta / Schmoll / Herrera-Estrella Biotechnology and Biology of Trichoderma jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;BIOTECHNOLOGY AND BIOLOGY OF
TRICHODERMA
;4
3;Copyright
;5
4;Contents;6
5;Preface;12
6;Foreword;14
7;List of Contributors;16
8;Section A - BIOLOGY AND BIODIVERSITY;20
8.1;Chapter 1 - Biodiversity of the Genus Hypocrea/Trichoderma in Different Habitats;22
8.1.1;INTRODUCTION;22
8.1.2;METHODOLOGY OF STUDYING TRICHODERMA BIODIVERSITY;22
8.1.3;TRICHODERMA DIVERSITY IN DIFFERENT HABITATS;24
8.1.4;CONCLUSIONS;37
8.1.5;Acknowledgments;37
8.1.6;References;37
8.2;Chapter 2 - Ecophysiology of Trichoderma in Genomic Perspective;44
8.2.1;TRICHODERMA IN ITS ECOLOGICAL NICHE;44
8.2.2;FROM DIVERSITY TO GENOMICS;46
8.2.3;MYCOTROPHY OF TRICHODERMA;47
8.2.4;SAPROTROPHY OF TRICHODERMA ON DEAD WOOD;49
8.2.5;TRICHODERMA GROWTH IN SOIL;50
8.2.6;RHIZOSPHERE COMPETENCE OF TRICHODERMA;51
8.2.7;TRICHODERMA VERSUS MYCORRHIZAE;51
8.2.8;TRICHODERMA+BACTERIA=?;52
8.2.9;FACULTATIVE ENDOPHYTISM OF TRICHODERMA;52
8.2.10;ANIMAL NOURISHMENT OF TRICHODERMA;53
8.2.11;MOST OF THE FAMOUS TRICHODERMA SPECIES ARE ENVIRONMENTAL OPPORTUNISTS;53
8.2.12;VERSATILE CARBON UTILIZATION PATTERNS REFLECT ECOLOGICAL SPECIALIZATION OF TRICHODERMA SPP;54
8.2.13;Acknowledgments;56
8.2.14;References;56
8.3;Chapter 3 - DNA Barcode for Species Identification in Trichoderma;60
8.3.1;INTRODUCTION;60
8.3.2;THE TOOLS;61
8.3.3;APPLICATION OF DNA BARCODING IN SPECIES-LEVEL IDENTIFICATION OF TRICHODERMA;62
8.3.4;TAXONOMIC STUDIES;62
8.3.5;BIODIVERSITY STUDIES;64
8.3.6;IDENTIFICATION OF INDUSTRIAL TRICHODERMA STRAINS;66
8.3.7;IDENTIFICATION OF BIOCONTROL TRICHODERMA STRAINS;67
8.3.8;IDENTIFICATION OF TRICHODERMA ISOLATES WITH CLINICAL RELEVANCE;69
8.3.9;IDENTIFICATION OF MUSHROOM PATHOGENIC TRICHODERMA STRAINS;70
8.3.10;CONCLUSIONS;70
8.3.11;Acknowledgments;71
8.3.12;References;71
8.4;Chapter 4 - Understanding the Diversity and Versatility of Trichoderma by Next-Generation Sequencing;76
8.4.1;INTRODUCTION;76
8.4.2;ACCESS TO FUNGAL AND TRICHODERMA DIVERSITY—TAXONOMIC PROFILING;77
8.4.3;PLANTS LIFE UNDER CONTROL OF TRICHODERMA—FUNCTIONAL PROFILING;81
8.4.4;CONCLUSION;82
8.4.5;Acknowledgments;82
8.4.6;References;82
8.5;Chapter 5 - Molecular Evolution of Trichoderma Chitinases;86
8.5.1;INTRODUCTION;86
8.5.2;PHYLOGENY AND EVOLUTION OF THE GH FAMILY 18 GENE FAMILY IN TRICHODERMA;87
8.5.3;SUBGROUP A CHITINASES;88
8.5.4;SUBGROUP B CHITINASES;90
8.5.5;SUBGROUP C CHITINASES;93
8.5.6;CONCLUSIONS;96
8.5.7;Acknowledgments;96
8.5.8;References;96
9;Section B - SECRETION AND PROTEIN PRODUCTION;98
9.1;Chapter
6 - Protein Production—Quality Control and Secretion Stress Responses in Trichoderma reesei;100
9.1.1;INTRODUCTION—MILESTONES OF TRICHODERMA REESEI;100
9.1.2;PROTEIN SECRETOME OF T. REESEI;101
9.1.3;ER QUALITY CONTROL AND SECRETION STRESS RESPONSES;103
9.1.4;CONCLUSION;105
9.1.5;References;105
9.2;Chapter 7 - Heterologous Expression of Proteins in Trichoderma
;108
9.2.1;INTRODUCTION;108
9.2.2;PROMOTER OPTIONS;111
9.2.3;FUSION PARTNERS;112
9.2.4;EXTRACELLULAR PROTEASES;113
9.2.5;SECRETION STRESS IN THE FRAME;114
9.2.6;MASS PRODUCTION OF HETEROLOGOUS PROTEIN BY FERMENTATION;116
9.2.7;N-GLYCOSYLATION OF HETEROLOGOUS PROTEINS PRODUCED IN T. REESEI;116
9.2.8;CONCLUSIONS;117
9.2.9;Acknowledgments;118
9.2.10;References;118
9.3;Chapter
8 - Trichoderma Secretome: An Overview;122
9.3.1;INTRODUCTION;122
9.3.2;PROTEOMIC ANALYSIS OF SECRETORY PROTEINS;124
9.3.3;EXTRACTION OF EXTRACELLULAR PROTEINS FOR PROTEOMIC ANALYSIS;125
9.3.4;EXTRACELLULAR PROTEIN SECRETION BY T. REESEI;126
9.3.5;POLYSACCHARIDE DEGRADATION MACHINERY OF T. REESEI;127
9.3.6;NEW CANDIDATES IN CELLULOSE DEGRADATION;128
9.3.7;HEMICELLULOSE HYDROLYZING ENZYMES;129
9.3.8;LIGNIN DEGRADATION BY T. REESEI;130
9.3.9;INDUSTRIAL APPLICATIONS OF T. REESEI CELLULOLYTIC ENZYMES;130
9.3.10;CONCLUSION;131
9.3.11;References;131
9.4;Chapter
9 - The Secretory Pathway in the Filamentous Fungus Trichoderma;134
9.4.1;INTRODUCTION;134
9.4.2;TRANSLOCATION;134
9.4.3;COTRANSLATIONAL TRANSLOCATION;135
9.4.4;POST TRANSLATIONAL TRANSLOCATION;135
9.4.5;PROTEIN MODIFICATIONS IN THE ER;135
9.4.6;VESICLE TRANSPORT FROM ER TO GOLGI COMPLEX AND TRAFFICKING WITHIN THE GOLGI CISTERNAE;137
9.4.7;TRANSPORT AFTER TRAFFICKING WITHIN THE GOLGI COMPLEX;138
9.4.8;SECRETED PROTEINS IN TRICHODERMA;138
9.4.9;CONCLUDING REMARKS;139
9.4.10;Acknowledgments;139
9.4.11;References;139
10;Section C - SECONDARY METABOLISM
;142
10.1;Chapter 10 -
Secondary Metabolism and Antimicrobial Metabolites of Trichoderma;144
10.1.1;INTRODUCTION;144
10.1.2;PEPTAIBOLS;145
10.1.3;DIKETOPIPERAZINE-LIKE COMPOUNDS;148
10.1.4;POLYKETIDES;148
10.1.5;PYRONES;149
10.1.6;TERPENES;150
10.1.7;CONCLUDING REMARKS AND FUTURE DIRECTIONS;152
10.1.8;Acknowledgments;153
10.1.9;References;153
10.2;Chapter
11 - Recent Advancements on the Role and Analysis of Volatile Compounds (VOCs) from Trichoderma;158
10.2.1;INTRODUCTION;158
10.2.2;DETECTION TECHNIQUES OF VOCS;159
10.2.3;TYPES OF VOLATILES COMPOUNDS;161
10.2.4;APPLICATION OF VOCS IN AGRICULTURE;184
10.2.5;CONCLUSION;187
10.2.6;References;187
11;Section D - TOOLS
;196
11.1;Chapter 12 -
Molecular Tools for Strain Improvement of Trichoderma spp;198
11.1.1;INTRODUCTION;198
11.1.2;GENETIC TRANSFORMATION TECHNIQUES;199
11.1.3;AUXOTROPHIC AND DOMINANT SELECTION MARKERS;200
11.1.4;MARKER RECYCLING STRATEGIES AND MARKER FREE STRAINS;201
11.1.5;ADVANCED METHODS FOR GENE TARGETING;202
11.1.6;RNA MEDIATED GENE SILENCING;203
11.1.7;PROMOTERS FOR RECOMBINANT PROTEIN EXPRESSION AND TARGETING;204
11.1.8;CONCLUDING REMARKS;207
11.1.9;References;207
11.2;Chapter
13 - Genetic Transformation and Engineering of Trichoderma reesei for Enhanced Enzyme Production;212
11.2.1;INTRODUCTION;212
11.2.2;ENGINEERING CELLULASE AND HEMICELLULASE REGULATION;213
11.2.3;HOMOLOGOUS AND HETEROLOGOUS GENE EXPRESSION AND GENE DISRUPTION;214
11.2.4;PROTEIN ENGINEERING;215
11.2.5;ENGINEERING PROMOTERS;216
11.2.6;CONCLUSION;217
11.2.7;References;217
11.3;Chapter
14 - Applications of RNA Interference for Enhanced Cellulase Production in Trichoderma;220
11.3.1;INTRODUCTION;220
11.3.2;RNA INTERFERENCE IN FUNGUS;221
11.3.3;TRANSCRIPTIONAL REGULATION OF CELLULASE GENE EXPRESSION;222
11.3.4;APPLICATION OF GENE DOWNREGULATION STRATEGY FOR ENHANCED CELLULASE PRODUCTION;223
11.3.5;COMBINATION OF RNAI AND OVEREXPRESSION OF THE REGULATING GENES;227
11.3.6;CONCLUSIONS AND PROSPECTS;230
11.3.7;References;230
11.4;Chapter
15 - RNAi-Mediated Gene Silencing in Trichoderma: Principles and Applications;234
11.4.1;INTRODUCTION;234
11.4.2;MOLECULAR MECHANISMS;235
11.4.3;ADVANTAGES AND DISADVANTAGES OF USING RNAI-MEDIATED GENE SILENCING AS A GENETIC MANIPULATION TOOL IN FILAMENTOUS FUNGI;237
11.4.4;STRATEGIES OF APPLYING RNAI FOR GENE SILENCING IN TRICHODERMA AND OTHER FILAMENTOUS FUNGI;239
11.4.5;CONCLUSIONS;242
11.4.6;References;243
12;Section E - CELLULASES
;246
12.1;Chapter 16 -
Cellulase Systems in Trichoderma: An Overview;248
12.1.1;INTRODUCTION;248
12.1.2;DEGRADATION OF CELLULOSE BY CELLULASE SYSTEMS;249
12.1.3;HISTORY OF THE TRICHODERMA CELLULASE RESEARCH;251
12.1.4;STRUCTURAL AND FUNCTIONAL DIVERSITY OF TRICHODERMA CELLULASES;251
12.1.5;CELLULASE SYSTEMS AND COMPLEXES;259
12.1.6;Acknowledgments;260
12.1.7;References;260
12.2;Chapter
17 - Use of Cellulases from Trichoderma reesei in the Twenty-First Century—Part I: Current Industrial Uses and Future Applications in the Production of Second Ethanol Generation;264
12.2.1;OVERVIEW OF THE GLOBAL ENZYME MARKET;264
12.2.2;INDUSTRIAL CELLULASES;265
12.2.3;CURRENT APPLICATIONS;268
12.2.4;PERSPECTIVES;272
12.2.5;APPLICATION OF TRICHODERMA CELLULASES IN THE BIOETHANOL INDUSTRY;272
12.2.6;References;277
12.3;Chapter
18 - Use of Cellulases from Trichoderma reesei in the Twenty-First Century—Part II: Optimization of Cellulolytic Cocktails for Saccharification of Lignocellulosic Feedstocks;282
12.3.1;GENETICS OF INDUSTRIAL TRICHODERMA REESEI STRAINS;282
12.3.2;THE T. REESEI ENZYME COCKTAIL;283
12.3.3;HYDROLYSIS OF CELLULOSE;285
12.3.4;LIMITATIONS IN LIGNOCELLULOSE HYDROLYSIS;286
12.3.5;IMPROVEMENT OF ENZYME COCKTAILS BY OPTIMIZATION OF ENZYME RATIOS;288
12.3.6;IMPROVEMENT BY SUPPLEMENTATION OF T. REESEI ENZYME COCKTAILS;289
12.3.7;ADAPTING CELLULOSE COCKTAILS TO PROCESS CONDITIONS;294
12.3.8;CONCLUSIONS AND PERSPECTIVES;294
12.3.9;References;294
12.4;Chapter
19 - Beta-Glucosidase from Trichoderma to Improve the Activity of Cellulase Cocktails;300
12.4.1;INTRODUCTION;300
12.4.2;CELLULASE CLASSIFICATION;301
12.4.3;TRICHODERMA REESEI CELLULASES;301
12.4.4;TRICHODERMA REESEI BGLS;303
12.4.5;BGLS FROM ASPERGILLUS ORYZAE;303
12.4.6;SYNERGISM BETWEEN CELLULASES;305
12.4.7;HETEROLOGOUS EXPRESSION OF CELLULASES;305
12.4.8;YARROWIA LIPOLYTICA EXPRESSION PLATFORMS;305
12.4.9;PICHIA PASTORIS EXPRESSION PLATFORMS;306
12.4.10;.-GLUCOSIDASE FROM TRICHODERMA TO IMPROVE THE ACTIVITY OF CELLULASE COCKTAILS;306
12.4.11;Acknowledgments;307
12.4.12;References;307
12.5;Chapter
20 - Regulation of Glycoside Hydrolase Expression in Trichoderma;310
12.5.1;INTRODUCTION;310
12.5.2;REGULATION BY ENVIRONMENTAL PARAMETERS;311
12.5.3;REGULATORY MECHANISMS;316
12.5.4;PHYSIOLOGICAL RESPONSES;321
12.5.5;References;322
12.6;Chapter
21 - Trichoderma Proteins with Disruption Activity on Cellulosic Substrates;328
12.6.1;STRUCTURE AND OCCURRENCE OF CELLULOSE IN NATURE;328
12.6.2;GENERAL ASPECTS OF CELLULOSE DEGRADATION;329
12.6.3;CELLULOSE DEGRADATION BY T. REESEI;330
12.6.4;CELLULOLYTIC ENZYMES IN OTHER TRICHODERMA SPECIES;333
12.6.5;Acknowledgments;333
12.6.6;References;333
12.7;Chapter
22 - Molecular Mechanism of Cellulase Production Systems in Trichoderma;338
12.7.1;INTRODUCTION;338
12.7.2;CELLULASE SYSTEM OF T. REESEI;338
12.7.3;INDUCTION MECHANISM OF CELLULASE PRODUCTION;339
12.7.4;PROMOTER INVOLVED IN CELLULASE PRODUCTION;339
12.7.5;MOLECULAR MECHANISM OF CELLULASE PRODUCTION;339
12.7.6;APPROACHES FOR REFINING THE CELLULASES PRODUCTION SYSTEM IN T. REESEI;340
12.7.7;References;341
12.8;Chapter
23 - Trichoderma in Bioenergy Research: An Overview;344
12.8.1;INTRODUCTION;344
12.8.2;FUNGAL ENZYME SYSTEMS AND TRICHODERMA TECHNOLOGY;345
12.8.3;INDUSTRIAL APPLICATIONS OF TRICHODERMA;346
12.8.4;TRICHODERMA ENZYME SYSTEMS IN BIOENERGY RESEARCH;347
12.8.5;CONCLUSION;351
12.8.6;References;351
13;Section F -
INDUSTRIAL APPLICATIONS;356
13.1;Chapter 24 -
Trichoderma Enzymes for Food Industries;358
13.1.1;INTRODUCTION;358
13.1.2;FUNGUS OF INDUSTRIAL INTEREST;359
13.1.3;TRICHODERMA ENZYMES FOR INDUSTRIES;359
13.1.4;XYLANASES;360
13.1.5;CELLULASES;360
13.1.6;OTHER ENZYMES;361
13.1.7;FOOD INDUSTRY;361
13.1.8;PERSPECTIVES FOR BIOTECHNOLOGICAL PRODUCTION OF ENZYMES BY TRICHODERMA;362
13.1.9;References;362
13.2;Chapter
25 - Trichoderma: A Dual Function Fungi and Their Use in the Wine and Beer Industries;364
13.2.1;INTRODUCTION;364
13.2.2;APPLICATION IN THE WINE AND BEER INDUSTRIES;366
13.2.3;Acknowledgments;367
13.2.4;References;367
13.3;Chapter
26 - Trichoderma Enzymes for Textile Industries;370
13.3.1;SUBSTRATE;370
13.3.2;ENZYMES;371
13.3.3;TEXTILE PROCESSES;372
13.3.4;TRICHODERMA ENZYMES IN TEXTILE FINISHING PROCESSES;374
13.3.5;TRICHODERMA AS A PRODUCTION HOST FOR TEXTILE ENZYMES;376
13.3.6;FUTURE TRENDS;378
13.3.7;Acknowledgments;378
13.3.8;References;378
13.4;Chapter
27 - Metabolic Diversity of Trichoderma;382
13.4.1;INTRODUCTION;382
13.4.2;GLOBAL METABOLISM;383
13.4.3;CARBOHYDRATE METABOLISM AND GLYCOSIDE HYDROLASES;385
13.4.4;ENERGY METABOLISM;387
13.4.5;SECONDARY METABOLISM;388
13.4.6;METABOLISM AND TRANSPORTERS;391
13.4.7;Acknowledgments;393
13.4.8;References;393
13.5;Chapter
28 - Sequence Analysis of Industrially Important Genes from Trichoderma;396
13.5.1;INTRODUCTION;396
13.5.2;GENE SEQUENCE ANALYSIS FUNDAMENTALS;397
13.5.3;GENOME ANALYSIS OF TRICHODERMA;402
13.5.4;INDUSTRIALLY GENES FROM TRICHODERMA;403
13.5.5;SEQUENCE ANALYSIS OF INDUSTRIALLY GENES FROM TRICHODERMA;403
13.5.6;CONCLUSION;408
13.5.7;References;409
13.6;Chapter
29 - Biosynthesis of Silver Nano-Particles by Trichoderma and Its Medical Applications;412
13.6.1;INTRODUCTION;412
13.6.2;SNP BIOSYNTHESIS;414
13.6.3;MECHANISM;416
13.6.4;MEDICAL APPLICATION;418
13.6.5;References;419
13.7;Chapter
30 - Role of Trichoderma Species in Bioremediation Process: Biosorption Studies on Hexavalent Chromium;424
13.7.1;INTRODUCTION;424
13.7.2;HEXAVALENT CHROMIUM BIOREMEDIATION WILL BE DISCUSSED HERE WITH A CASE STUDY REPRESENTING CHROMIUM BIOSORPTION BY TRICHODERMA SPE...;426
13.7.3;CONCLUSION;430
13.7.4;References;431
14;Section G - BIOCONTROL AND PLANT
GROWTH PROMOTION
;432
14.1;Chapter 31 -
Applications of Trichoderma in Plant Growth Promotion;434
14.1.1;INTRODUCTION;434
14.1.2;TRICHODERMA AS A PLANT GROWTH PROMOTER;435
14.1.3;CONSISTENCY OF GROWTH PROMOTION;437
14.1.4;COMMERCIALIZATION;438
14.1.5;MECHANISMS OF GROWTH PROMOTION;439
14.1.6;CONCLUSIONS;444
14.1.7;References;444
14.2;Chapter
32 - Molecular Mechanisms of Biocontrol in Trichoderma spp. and Their Applications in Agriculture ;448
14.2.1;INTRODUCTION;448
14.2.2;MYCOPARASITISM;449
14.2.3;MORPHOLOGICAL CHANGES;449
14.2.4;ROLL OF CELL WALL DEGRADING ENZYMES;450
14.2.5;SIGNAL TRANSDUCTION IN MYCOPARASITISM;451
14.2.6;ROS-NOX-SIGNAL TRANSDUCTION;452
14.2.7;ANTIBIOSIS (SECONDARY METABOLITES INVOLVED IN BIOCONTROL);454
14.2.8;PYRONES;455
14.2.9;POLYKETIDES;456
14.2.10;NONRIBOSOMAL PEPTIDES;456
14.2.11;MYCOTOXINS PRODUCED BY TRICHODERMA SPP;457
14.2.12;SYNERGISM BETWEEN ENZYMES AND ANTIBIOTICS;458
14.2.13;COMPETITION FOR NUTRIENTS;458
14.2.14;PLANT GROWTH PROMOTION BY TRICHODERMA;459
14.2.15;PLANT ROOT COLONIZATION;461
14.2.16;INDUCTION OF SYSTEMIC RESISTANCE TO PLANTS BY TRICHODERMA SPP;462
14.2.17;SIGNAL TRANSDUCTION PATHWAYS THAT MEDIATE TRICHODERMA-PLANT COMMUNICATION;463
14.2.18;TRICHODERMA ELICITOR OF SYSTEMIC RESISTANCE IN PLANTS;465
14.2.19;SIGNAL TRANSDUCTION DURING PLANT–TRICHODERMA INTERACTION IN TRICHODERMA;467
14.2.20;TRANSGENIC PLANTS EXPRESSING TRICHODERMA GENES;467
14.2.21;CONCLUDING REMARKS;468
14.2.22;Acknowledgments;468
14.2.23;References;468
14.3;Chapter
33 - Genome-Wide Approaches toward Understanding Mycotrophic Trichoderma Species;474
14.3.1;INTRODUCTION;474
14.3.2;LESSONS FROM THE GENOME SEQUENCE;476
14.3.3;TRANSCRIPTOME ANALYSES;477
14.3.4;THE FUNCTIONAL GENOMICS VIEW OF MYCOPARASITISM;477
14.3.5;HIGH-THROUGHPUT ANALYSIS OF THE TRICHODERMA-PLANT INTERACTION;478
14.3.6;FUTURE DIRECTIONS;480
14.3.7;CONCLUDING REMARKS;481
14.3.8;Acknowledgments;481
14.3.9;References;481
14.4; Chapter 34 - Insights into Signaling Pathways of Antagonistic Trichoderma Species
;484
14.4.1;INTRODUCTION;484
14.4.2;G PROTEIN SIGNALING;484
14.4.3;EFFECTOR PATHWAYS OF G PROTEIN SIGNALING IN FUNGI;485
14.4.4;SIGNALING PATHWAYS AND CHARACTERIZED COMPONENTS IN TRICHODERMA SPECIES;486
14.4.5;SIGNAL TRANSDUCTION COMPONENTS AND PATHWAYS AFFECTING VEGETATIVE GROWTH AND CONIDIATION;488
14.4.6;THE ROLE OF SIGNALING IN TRICHODERMA MYCOPARASITISM AND BIOCONTROL;490
14.4.7;CONCLUSIONS;493
14.4.8;Acknowledgments;493
14.4.9;References;493
14.5;Chapter
35 - Enhanced Resistance of Plants to Disease Using Trichoderma spp ;496
14.5.1;INTRODUCTION;496
14.5.2;INDUCED DISEASE RESISTANCE IN PLANTS;497
14.5.3;INDUCED RESISTANCE BY TRICHODERMA SPP;500
14.5.4;SIGNALING PATHWAYS OF TRICHODERMA-INDUCED RESISTANCE;501
14.5.5;TRICHODERMA SPP.-SECRETED ELICITORS OF PLANT RESISTANCE;502
14.5.6;ENGINEERING PLANTS FOR DISEASE RESISTANCE USING TRICHODERMA GENES;504
14.5.7;COMBINATION OF TRICHODERMA WITH OTHER BENEFICIAL MICROORGANISMS;505
14.5.8;OTHER EFFECTS OF TRICHODERMA SPP. INOCULATION TO THE PLANT;506
14.5.9;CONCLUSION;506
14.5.10;References;507
14.6;Chapter
36 - Enhanced Plant Immunity Using Trichoderma ;514
14.6.1;INTRODUCTION;514
14.6.2;MECHANISMS OF PLANT PROTECTION BY MICROBES;514
14.6.3;TRICHODERMA-INDUCED IMMUNITY;517
14.6.4;PLANT PROTECTION CONFERRED BY TRICHODERMA;519
14.6.5;CONCLUSIONS;520
14.6.6;Acknowledgments;520
14.6.7;References;520
14.7;Chapter
37 - Genes from Trichoderma as a Source for Improving Plant Resistance to Fungal Pathogen ;524
14.7.1;INTRODUCTION;524
14.7.2;TRICHODERMA INDUCING RESISTANCE IN PLANTS;525
14.7.3;TRANSGENIC PLANTS EXPRESSING TRICHODERMA GENES DEVELOP INCREASED RESISTANCE TO FUNGAL PATHOGENS;525
14.7.4;TRICHODERMA GENES INVOLVED IN ELICITATION OF ISR;527
14.7.5;CONCLUSION;530
14.7.6;ABBREVIATIONS;530
14.7.7;Acknowledgments;530
14.7.8;References;530
14.8;Chapter
38 - Trichoderma Species as Abiotic Stress Relievers in Plants ;534
14.8.1;INTRODUCTION;534
14.8.2;MICROBES FOR THE MANAGEMENT OF ABIOTIC STRESSES;535
14.8.3;ALLEVIATION OF ABIOTIC STRESS IN PLANTS BY TRICHODERMA;535
14.8.4;ALLEVIATION OF DROUGHT STRESS IN PLANTS BY TRICHODERMA;536
14.8.5;ALLEVIATION OF SALINITY STRESS IN PLANTS BY TRICHODERMA;537
14.8.6;ALLEVIATION OF HEAT STRESS IN PLANTS BY TRICHODERMA;538
14.8.7;TRICHODERMA GENES FOR ABIOTIC STRESS TOLERANCE;539
14.8.8;MECHANISM OF ABIOTIC STRESS TOLERANCE USING TRICHODERMA;539
14.8.9;HOST GENE: STRESS TOLERANT VARIETIES;540
14.8.10;CONCLUSION;541
14.8.11;References;542
14.9;Chapter
39 - Advances in Formulation of Trichoderma for Biocontrol ;546
14.9.1;INTRODUCTION;546
14.9.2;TYPES OF FORMULATION;547
14.9.3;MICROENCAPSULATION;547
14.9.4;ENHANCEMENT OF SHELF LIFE AND APPLICATION EFFICIENCY;547
14.9.5;COMPATIBILITY WITH OTHER BIOLOGICAL SYSTEMS;548
14.9.6;CONCLUSION AND FUTURE PROSPECTS;549
14.9.7;References;549
14.10;Chapter
40 - Trichoderma: A Silent Worker of Plant Rhizosphere ;552
14.10.1;INTRODUCTION;552
14.10.2;DIVERSENESS AMONGST TRICHODERMA;553
14.10.3;TRICHODERMA AS INDUCER OF PLANT DEFENSE RESPONSE;555
14.10.4;TRICHODERMA AS A BIOFERTILIZER AND PLANT GROWTH PROMOTER;557
14.10.5;COMMERCIALIZATION;557
14.10.6;TRICHODERMA GENES RESPONSIBLE FOR PLAYING “BIG GAMES”;558
14.10.7;CONCLUSION;559
14.10.8;Acknowledgments;559
14.10.9;References;559
15;Index;562


List of Contributors
Sunil S.AdavSchool of Biological Sciences, Nanyang Technological University, Singapore MarikaAlapuranenRoal Oy, Rajamäki, Finland MiguelAlcaldeDepartamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain N.AroVTT Technical Research Centre of Finland, Espoo, Finland LeaAtanasovaResearch Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria AntonioBallesterosDepartamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain HodaBazafkanHealth and Environment Department, Austrian Institute of Technology GmbH (AIT), Tulln, Austria GabrieleBergGraz University of Technology, Environmental Biotechnology, Graz, Austria Jean-GuyBerrinLaboratoire de Biologie des Champignons Filamenteux, INRA, Polytech Marseille, Aix Marseille Université, Marseille, France RobertBischofInstitute of Chemical Engineering, Vienna University of Technology and Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria SentaBlanquetIFP Energies nouvelles, Biotechnology Department, Rueil-Malmaison, France Rosa ElenaCardozaArea of Microbiology, University School of Agricultural Engineers, University of León, Ponferrada, Spain SergioCasas-FloresDivisión de Biología Molecular, IPICyT, San Luis Potosí, México WarawutChulalaksananukul Biofuels by Biocatalysts Research Unit, Chulalongkorn University, Bangkok, Thailand Department of Botany, Chulalongkorn University, Bangkok, Thailand Hexon AngelContreras-CornejoInstituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México Christian Joseph R.CumagunCollege of Agriculture, University of the Philippines Los Baños, Los Baños, Laguna, Philippines Manzoor H.DarInternational Rice Research Institute, IRRI, New Delhi, India Marcelo V.de SousaDepartment of Cell Biology, University of Brasilia, Brasilia, Federal District, Brazil ChristianDerntlResearch Area Gene Technology, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria Luis H.F.Do ValeDepartment of Cell Biology, University of Brasilia, Brasilia, Federal District, Brazil ZhiyangDongInstitute of Microbiology, Chinese Academy of Sciences, Beijing, China Sedigheh KarimiDorchehInstitute for Genetic Microbiology, Friedrich-Schiller University Jena, Jena, Germany IrinaDruzhininaInstitute of Chemical Engineering, Vienna University of Technology, Research Area Biotechnology and Microbiology, Vienna, Austria Ahmed M.A.El-BondklyNational Research Centre, Dokki, Giza, Egypt M.M.ElsharkawyLaboratory of Plant Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu City, Japan Carlos RobertoFelixDepartamento de Biologia Celular, Universidade de Brasilia, Brasilia, Federal District, Brasil Nicolas LopesFerreiraIFP Energies nouvelles, Biotechnology Department, Rueil-Malmaison, France Edivaldo X.F.FilhoDepartment of Cell Biology, University of Brasilia, Brasilia, Federal District, Brazil AnliGengSchool of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Clementi, Singapore Roberto J.González-HernándezDepartamento de Biología, Universidad de Guanajuato, Guanajuato, México SabineGruberResearch Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria Vijai K.GuptaMolecular Glycobiotechnology Group, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland SantiagoGutiérrezArea of Microbiology, University School of Agricultural Engineers, University of León, Ponferrada, Spain LórántHatvaniDepartment of Microbiology, University of Szeged, Szeged, Hungary SentaHeiss-BlanquetIFP Energies nouvelles, Biotechnology Department, Rueil-Malmaison, France RosaHermosaCentro Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca, Salamanca, Spain ArturoHernández-CervantesDepartamento de Biología, Universidad de Guanajuato, Guanajuato, México Marco J.Hernández-ChávezDepartamento de Biología, Universidad de Guanajuato, Guanajuato, México IsabelleHerpoel-GimbertLaboratoire de Biologie des Champignons Filamenteux, INRA, Polytech Marseille, Aix Marseille Université, Marseille, France AlfredoHerrera-EstrellaLaboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Irapuato, Guanajuato, Mexico RobertHillBio-Protection Research Centre, Lincoln University, Canterbury, New Zealand M.HyakumachiLaboratory of Plant Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu City, Japan KatarinaIhrmarkUppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden J.J.JoensuuVTT Technical Research Centre of Finland, Espoo, Finland MagnusKarlssonUppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden PéterKörmöcziDepartment of Microbiology, University of Szeged, Szeged, Hungary LászlóKredicsDepartment of Microbiology, University of Szeged, Szeged, Hungary AdinarayanaKunamneniDepartamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain GangLiuCollege of Life Science, Shenzhen University, Shenzhen, China Jesús SalvadorLópez-BucioInstituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México JoséLópez-BucioInstituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México Robert L.MachResearch Area Gene Technology, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria Astrid...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.