Haase | Multivariate General Linear Models | Buch | 978-1-4129-7249-9 | sack.de

Buch, Englisch, Band 170, 224 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 288 g

Reihe: Quantitative Applications in the Social Sciences

Haase

Multivariate General Linear Models


1. Auflage 2011
ISBN: 978-1-4129-7249-9
Verlag: Sage Publications, Inc

Buch, Englisch, Band 170, 224 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 288 g

Reihe: Quantitative Applications in the Social Sciences

ISBN: 978-1-4129-7249-9
Verlag: Sage Publications, Inc


This book provides an integrated introduction to multivariate multiple regression analysis (MMR) and multivariate analysis of variance (MANOVA). Beginning with an overview of the univariate general linear model, this volume defines the key steps in analyzing linear model data and introduces multivariate linear model analysis as a generalization of the univariate model. Richard F. Haase focuses on multivariate measures of association for four common multivariate test statistics, presents a flexible method for testing hypotheses on models, and emphasizes the multivariate procedures attributable to Wilks, Pillai, Hotelling, and Roy. The volume concludes with a discussion of canonical correlation analysis that is shown to subsume all the multivariate procedures discussed in previous chapters. The analyses are illustrated throughout the text with three running examples drawing from several disciples, including personnel psychology, anthropology, environmental epidemiology, and neuropsychology.

Haase Multivariate General Linear Models jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1. Introduction and Review of Univariate General Linear Models
2. Specifying the Structure of the Multivariate General Linear Model
3. Estimating the Parameters of the Multivariate General Linear Model
4. Partitioning the SSCP, Measures of Strength of Association, and Test Statistics in the Multivariate General Linear Model
5. Testing Hypotheses in the Multivariate General Linear Model
6. Coding the Design Matrix and the Multivariate Analysis of Variance
7. The Eigenvalue Solution to the Multivariate General Linear Model: Canonical Correlation and Multivariate Test Statistics
References


Haase, Richard F.
Richard F. Haase is Professor Emeritus and Research Professor in the Division of Counseling Psychology of the School of Education and Fellow of the Institute for Health and the Environment of the School of Public Health, both at the University at Albany of the State University of New York. After completing his Ph.D. in Psychology from Colorado State University he has taught research methods, statistics and data analysis at the University of Massachusetts at Amherst, Texas Tech University and the University at Albany. His interests are in the areas of research methods, univariate and multivariate statistics, and vocational psychology. His work on research methodology and data analysis has appeared in the Journal of Consulting and Clinical Psychology, Journal of Counseling Psychology, Educational and Psychological Measurement, Multivariate Behavioral Research, Applied Psychological Measurement, Environmental Research, and the Journal of Vocational Behavior.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.