E-Book, Englisch, Band 59, 252 Seiten
Haslinger The d-bar Neumann Problem and Schrödinger Operators
1. Auflage 2014
ISBN: 978-3-11-031535-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, Band 59, 252 Seiten
Reihe: De Gruyter Expositions in MathematicsISSN
ISBN: 978-3-11-031535-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Graduate students and scientists in complex analysis, operator theory and partial differential equations; Academic libraries
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface;7
2;Contents;9
3;1 Bergman spaces;13
3.1;1.1 Elementary properties;13
3.2;1.2 Examples;20
3.3;1.3 Biholomorphic maps;24
3.4;1.4 Notes;27
4;2 The canonical solution operator to ??;28
4.1;2.1 Compact operators on Hilbert spaces;28
4.2;2.2 The canonical solution operator to
.¯ restricted to A2(D);38
4.3;2.3 Notes;47
5;3 Spectral properties of the canonical solution operator to
;48
5.1;3.1 Complex differential forms;48
5.2;3.2 (0, 1)-forms with holomorphic coefficients;49
5.3;3.3 Compactness and Schatten class membership;51
5.4;3.4 Notes;61
6;4 The .¯ -complex
;62
6.1;4.1 Unbounded operators on Hilbert spaces;62
6.2;4.2 Distributions;77
6.3;4.3 A finite-dimensional analog;83
6.4;4.4 The .¯ -Neumann operator
;84
6.5;4.5 Notes;98
7;5 Density of smooth forms;99
7.1;5.1 Friedrichs’ Lemma and Sobolev spaces;99
7.2;5.2 Density in the graph norm;110
7.3;5.3 Notes;115
8;6 The weighted .¯-complex ;116
8.1;6.1 The .¯-Neumann operator
on (0, 1)-forms;116
8.2;6.2 (0, q)-forms
;121
8.3;6.3 Notes;124
9;7 The twisted .¯-complex
;126
9.1;7.1 An exact sequence of unbounded operators;126
9.2;7.2 The twisted basic estimates;127
9.3;7.3 Notes;130
10;8 Applications;131
10.1;8.1 Hörmander’s L2-estimates
;131
10.2;8.2 Weighted spaces of entire functions;134
10.3;8.3 Notes;138
11;9 Spectral analysis;139
11.1;9.1 Resolutions of the identity;139
11.2;9.2 Spectral decomposition of bounded normal operators;142
11.3;9.3 Spectral decomposition of unbounded self-adjoint operators;148
11.4;9.4 Determination of the spectrum;162
11.5;9.5 Variational characterization of the discrete spectrum;172
11.6;9.6 Notes;177
12;10 Schrödinger operators and Witten–Laplacians;178
12.1;10.1 Difference quotients;178
12.2;10.2 Interior regularity;180
12.3;10.3 Schrödinger operators with magnetic field;183
12.4;10.4 Witten–Laplacians;190
12.5;10.5 Dirac and Pauli operators;192
12.6;10.6 Notes;194
13;11 Compactness;195
13.1;11.1 Precompact sets in L2-spaces
;195
13.2;11.2 Sobolev spaces and Gårding’s inequality;198
13.3;11.3 Compactness in weighted spaces;202
13.4;11.4 Bounded pseudoconvex domains;214
13.5;11.5 Notes;217
14;12 The .¯-Neumann
operator and the Bergman projection;219
14.1;12.1 The Stone–Weierstraß Theorem;219
14.2;12.2 Commutators of the Bergman projection;222
14.3;12.3 Notes;227
15;13 Compact resolvents;228
15.1;13.1 Schrödinger operators;228
15.2;13.2 Dirac and Pauli operators;230
15.3;13.3 Notes;232
16;14 Spectrum of .
on the Fock space;233
16.1;14.1 The general setting;233
16.2;14.2 Determination of the spectrum;235
16.3;14.3 Notes;240
17;15 Obstructions to compactness;241
17.1;15.1 The bidisc;241
17.2;15.2 Weighted spaces;242
17.3;15.3 Notes;246
18;Bibliography;247
19;Index;251