Buch, Englisch, 134 Seiten, Format (B × H): 129 mm x 198 mm, Gewicht: 151 g
Reihe: AI for Everything
Buch, Englisch, 134 Seiten, Format (B × H): 129 mm x 198 mm, Gewicht: 151 g
Reihe: AI for Everything
ISBN: 978-1-032-12484-1
Verlag: CRC Press
AI for Scientific Discovery provides an accessible introduction to the wide-ranging applications of artificial intelligence (AI) technologies in scientific research and discovery across the full breadth of scientific disciplines. AI technologies support discovery science in multiple ways. They support literature management and synthesis, allowing the wealth of what has already been discovered and reported on to be integrated and easily accessed. They play a central role in data analysis and interpretation in the context of what is called ‘data science’. AI is also helping to combat the reproducibility crisis in scientific research by underpinning the discovery process with AI-enabled standards and pipelines and supporting the management of large-scale data and knowledge resources so that they can be shared and integrated and serve as a background ‘knowledge ecosystem’ into which new discoveries can be embedded. However, there are limitations to what AI can achieve and its outputs can be biased and confounded and thus should not be blindly trusted. The latest generation of hybrid and ‘human-in-the-loop’ AI technologies have as their objective a balance between human inputs and insights and the power of number-crunching and statistical inference at a massive scale that AI technologies are best at.
Zielgruppe
General, Postgraduate, Professional, Undergraduate Advanced, and Undergraduate Core
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Geisteswissenschaften Philosophie Angewandte Ethik & Soziale Verantwortung Wissenschaftsethik, Technikethik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Technische Informatik
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein Soziale und ethische Aspekte der EDV
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
Weitere Infos & Material
Preface. Acknowledgements. About the Author. 1 Introduction: AI and the Digital Revolution in Science. 2 AI for Managing Scientific Literature and Evidence. 3 AI for Data Interpretation. 4 AI for Reproducible Research. 5 Limitations of AI and Strategies for Combating Bias. 6 Conclusion: AI and the Future of Scientific Discovery. Index.