An Introduction for Surface Scientists and Nanoscientists
Buch, Englisch, 432 Seiten, Format (B × H): 173 mm x 249 mm, Gewicht: 1089 g
ISBN: 978-3-527-33970-9
Verlag: WILEY-VCH
From the contents:
Bulk Crystals, Three-Dimensional Lattices
- Crystal Layers, Two-Dimensional Lattices, Symmetry
- Ideal Single Crystal Surfaces
- Real Crystal Surfaces
- Adsorbate layers
- Interference Lattices
- Chiral Surfaces
- Experimental Analysis of Real Crystal Surfaces
- Nanoparticles and Crystallites
- Quasicrystals
- Nanotubes
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. Introduction
2. Bulk crystals, 3-dimensional lattices
2.1. Basic definitions
2.2. Representation of bulk lattices
2.3. Periodicity cells of lattices
2.4. Lattice symmetry
2.5. Neighbor shells
2.6. Quasicrystals
Exercises
3. Crystal layers, 2-dimensional lattices
3.1. Basic definitions, Miller indices
3.2. Reciprocal lattice
3.3. Netplane-adapted lattice vectors
3.4. Symmetrically appropriate lattice vectors, Minkowski reduction
3.5. Miller indices for cubic lattices
3.6. Alternative definition of Miller indices, hexagonal Miller-Bravais indices
3.7. Symmetry properties of netplanes
3.8 Crystal systems and Bravais lattices in two dimensions
3.9 Crystallographic classification of netplanes
Exercises
4. Ideal single crystal surfaces
4.1. Basic definitions, termination
4.2. Morphology of surfaces, stepped and kinked surfaces
4.3. Miller index decomposition
4.4. Chiral surfaces
Exercises
5. Real crystal surfaces
5.1. Surface relaxation
5.2. Surface reconstruction
5.3. Facetting
Exercises
6. Adsorbate layers
6.1. Definition and classification
6.2. Wood notation of surface geometry
6.3. Symmetry domain formation
Exercises
7. Experimental analysis of real crystal surfaces
7.1. Experimental methods
7.2. The NIST Surface Structure Database (SSD)
Exercises
8. Nanotubes
8.1. Basic definition
8.2. Nanotubes and symmetry
8.3. Complex nanotubes, examples
Exercises
Appendices:
A Mathematics of the Wood notation
B Mathematics of the Minkowski reduction
C Some details of number theory
D Some details of vector calculus and linear algebra
E Parameter tables of crystals
F Relevant websites
1. Introduction
2. Bulk Crystals: Three-Dimensional Lattices
2.1. Basic Definition
2.2. Representation of Bulk Crystals
2.3. Periodicity Cells of Lattices
2.4. Lattice Symmetry
2.5. Reciprocal Lattice
2.6. Neighbor Shells
2.7. Nanoparticles and Crystallites
2.8. Incommensurate Crystals and Quasicrystals
3. Crystal Layers: Two-Dimensional Lattices
3.1. Basic Definition, Miller Indices
3.2. Netplane-Adapted Lattice Vectors
3.3. Minkowski Reduction
3.4. Miller Indices for Cubic and Trigonal Lattices
3.5. Alternative Definition of Miller Indices, Miller Bravais Indices
3.6. Symmetry of Netplanes
3.7. Crystal Systems and Bravais Lattices in Two Dimensions
3.8. Crystallographic Classification of Netplanes and Monolayers
4. Ideal Single Crystal Surfaces
4.1. Basic Definition, Termination
4.2. Morphology of Surfaces, Stepped and Kinked Surfaces
4.3. Miller Index Decomposition
4.4. Chiral and Achiral Surfaces
5. Real Crystal Surfaces
5.1. Surface Relaxation
5.2. Surface Reconstruction
5.3. Growth Processes
5.4. Facetting
6. Adsorbate layers
6.1. Definition and Classification
6.2.. Adsorbate Sites
6.3. Wood Notation
6.4.. High-Order Commensurate (HOC) Overlayers
6.5. Interference Lattices
6.6. Symmetry and Domains
6.7. Adsorption and Chirality
7. Experimental Analysis of Real Crystal Surfaces
7.1. Experimental Methods
7.2. Surface Structure Compilations
7.3. Database Formats
8. Nanotubes
8.1. Basic Definition
8.2. Nanotubes and Symmetry
8.3. Complex Nanotubes
A. Sketches of High-Symmetry Adsorbate Sites
B. Parameter Tables of Crystals
C. Mathematics of the Wood Notation
D. Mathematics of the Minkowski Reduction
E. Details of Number Theory
F. Details of Vector Calculus
G. Details of Fourier Theory
H. List of Surface Web Sites