E-Book, Englisch, Band 211, 208 Seiten, eBook
Reihe: Progress in Mathematics
Hernández-Lerma / Lasserre Markov Chains and Invariant Probabilities
Erscheinungsjahr 2012
ISBN: 978-3-0348-8024-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 211, 208 Seiten, eBook
Reihe: Progress in Mathematics
ISBN: 978-3-0348-8024-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1 Preliminaries.- 1.1 Introduction.- 1.2 Measures and Functions.- 1.3 Weak Topologies.- 1.4 Convergence of Measures.- 1.5 Complements.- 1.6 Notes.- I Markov Chains and Ergodicity.- 2 Markov Chains and Ergodic Theorems.- 3 Countable Markov Chains.- 4 Harris Markov Chains.- 5 Markov Chains in Metric Spaces.- 6 Classification of Markov Chains via Occupation Measures.- II Further Ergodicity Properties.- 7 Feller Markov Chains.- 8 The Poisson Equation.- 9 Strong and Uniform Ergodicity.- III Existence and Approximation of Invariant Probability Measures.- 10 Existence of Invariant Probability Measures.- 11 Existence and Uniqueness of Fixed Points for Markov Operators.- 12 Approximation Procedures for Invariant Probability Measures.