Buch, Englisch, 424 Seiten, Format (B × H): 208 mm x 260 mm, Gewicht: 1135 g
Buch, Englisch, 424 Seiten, Format (B × H): 208 mm x 260 mm, Gewicht: 1135 g
ISBN: 978-1-107-13308-2
Verlag: Cambridge University Press
This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives, then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretation to address scientific questions. A must-have for astronomers, the book's concrete approach will also be attractive to researchers in the sciences more broadly.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Astronomie Astrophysik
- Naturwissenschaften Physik Angewandte Physik Astrophysik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Naturwissenschaften Astronomie Astronomie: Allgemeines
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
Weitere Infos & Material
Preface; 1. Astrostatistics; 2. Prerequisites; 3. Frequentist vs Bayesian methods; 4. Normal linear models; 5. GLM part I - continuous and binomial models; 6. GLM part II - count models; 7. GLM part III - zero-inflated and hurdle models; 8. Hierarchical GLMMs; 9. Model selection; 10. Astronomical applications; 11. The future of astrostatistics; Appendix A. Bayesian modeling using INLA; Bibliography; Index.