E-Book, Englisch, Band Volume 40, 365 Seiten, Web PDF
Reihe: European Materials Research Society Symposia Proceedings
Hirtz / Whitehouse / Meier Semiconductor Materials for Optoelectronics and LTMBE Materials
1. Auflage 2016
ISBN: 978-1-4832-9042-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings: Symposium A: Semiconductor Materials for Optoelectronic Devices/OEICs/Photonics and Symposium B: Low Temperature Molecular Beam Epitaxial III-V Materials: Physics/Applications of 1993 E-MRS Spring Conference Strasbourg, France, May ...
E-Book, Englisch, Band Volume 40, 365 Seiten, Web PDF
Reihe: European Materials Research Society Symposia Proceedings
ISBN: 978-1-4832-9042-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
These three day symposia were designed to provide a link between specialists from university or industry who work in different fields of semiconductor optoelectronics. Symposium A dealt with topics including: epitaxial growth of III-V, II-VI, IV-VI, Si-based structures; selective-area, localized and non-planar epitaxy, shadow-mask epitaxy; bulk and new optoelectronic materials; polymers for optoelectronics.Symposium B dealt with III-V epitaxial layers grown by low temperature molecular beam epitaxy, a subject which has undergone rapid development in the last three years.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Semiconductor Materials for Optoelectronics and Ltmbe Materials;4
3;Copyright Page;5
4;Table of Contents;6
5;Preface;14
6;Organizers and Sponsors;15
7;Part I: Symposium A on Semiconductor Materials for Optoelectronic Devices, OEICs and Photonics;12
7.1;Chapter 1. Stoichiometry of III-V compounds;16
7.1.1;Abstract;16
7.1.2;1. Introduction;16
7.1.3;2. Annealing effects on GaAs crystals under As vapour pressure;17
7.1.4;3. Liquid phase epitaxial growth by the temperature difference method under controlled vapour pressure;20
7.1.5;4. Surface treatment before regrowth of GaAs by molecular layer epitaxy and its association with the surface stoichiometry;21
7.1.6;5. Interstitial As atoms in GaAs;22
7.1.7;6. GaAs bulk crystal growth by the vapour-pressurecontrolled Czochralski (PCZ) method;24
7.1.8;7. GaAs bulk crystal grown by the vapourpressure- controlled float zone method;25
7.1.9;8. InP bulk crystal growth by the vapour-pressurecontrolled zone-melting method;26
7.1.10;9. GaP pure green LED without nitrogen doping;26
7.1.11;10. GaAlAs very bright LED;26
7.1.12;11. Theoretical consideration of stoichiometry control through solution;27
7.1.13;12. Summary;27
7.1.14;References;28
7.2;Chapter 2. Evaluation of III-V growth technologies for optoelectronic applications;29
7.2.1;Abstract;29
7.2.2;1. Introduction;29
7.2.3;2. Application fields of the growth technologies;29
7.2.4;3. Integration of technologies;35
7.2.5;4. Conclusion;36
7.2.6;References;37
7.3;Chapter 3. Selective and non-planar epitaxy of InP/GaInAs(P) by MOCVD;39
7.3.1;Abstract;39
7.3.2;1. Introduction;39
7.3.3;2. Experimental conditions;40
7.3.4;3. Selective-area epitaxy;40
7.3.5;4. Non-planar epitaxy;47
7.3.6;5. Device applications;50
7.3.7;6. Conclusions;54
7.3.8;Acknowledgments;55
7.3.9;References;55
7.4;Chapter 4. ESPRIT MORSE: research for novel metal-organic precursors;56
7.4.1;Abstract;56
7.4.2;1. Introduction;56
7.4.3;2. Novel aluminum precursors;56
7.4.4;3. Novel indium precursors;58
7.4.5;4. Novel phosphorus precursors;58
7.4.6;5. Novel arsenic precursors;59
7.4.7;6. Device results;60
7.4.8;7. Summary and outlook;60
7.4.9;Acknowledgment;61
7.4.10;References;61
7.5;Chapter 5. MBE regrowth of GaAs/AlGaAs structures on RIE patterned substrates;62
7.5.1;Abstract;62
7.5.2;1. Introduction;62
7.5.3;2. MBE regrowth on dry etched surfaces;62
7.5.4;3. Direct growth of nanostructures;63
7.5.5;4. Regrowth on shallow etched structures;64
7.5.6;5. Summary;64
7.5.7;Acknowledgment;65
7.5.8;References;65
7.6;Chapter 6. Improved method for GaAs-(Ga,Al)As epitaxial regrowth;66
7.6.1;Abstract;66
7.6.2;1. Introduction;66
7.6.3;2. Experimental details;66
7.6.4;3. Results and discussion;67
7.6.5;4. Conclusions;68
7.6.6;Acknowledgements;69
7.6.7;References;69
7.7;Chapter 7. Investigation of MOVPE-grown In0 53Ga047As/InP multi-quantum wells by Raman spectroscopy and X-ray diffractometry;70
7.7.1;Abstract;70
7.7.2;1. Introduction;70
7.7.3;2. Experimental set-up;71
7.7.4;3. Results and discussion;71
7.7.5;4. Conclusions;73
7.7.6;References;73
7.8;Chapter 8. Chemical beam epitaxy of high purity InP using tertiarybutylphosphine and 1,2 bis-phosphinoethane;74
7.8.1;Abstract;74
7.8.2;1. Introduction;74
7.8.3;2. Thermal decomposition of TBP and BPE;74
7.8.4;3. Growth and characterization of InP layers;75
7.8.5;4. Conclusions;76
7.8.6;Acknowledgments;77
7.8.7;References;77
7.9;Chapter 9. Optical characterization of extremely high purity ZnSe grown by metal-organic vapour phase epitaxy using dimethylzinc-triethylamine adduct;78
7.9.1;Abstract;78
7.9.2;1. Introduction;78
7.9.3;2. Experimental details;79
7.9.4;3. Results;79
7.9.5;4. Conclusion;81
7.9.6;Acknowledgment;81
7.9.7;References;82
7.10;Chapter 10. Spectroscopic ellipsometry: a useful tool to determine the refractive indices and interfaces of In0.52Al0.48As and In0.53AlxGa0.
47_xAs layers on InP in the wavelength range 280-1900 nm;83
7.10.1;Abstract;83
7.10.2;1. Introduction;83
7.10.3;2. MBE-growth;83
7.10.4;3. Spectroscopic ellipsometry;84
7.10.5;4. Conclusions;85
7.10.6;References;85
7.11;Chapter 11. Room temperature photoreflectance as a powerful tool to characterize the crystalline quality of InAlAs layers grown on InP substrates;86
7.11.1;Abstract;86
7.11.2;1. Introduction;86
7.11.3;2. Experimental details;86
7.11.4;3. Fitting procedure;87
7.11.5;4. Results and discussion;87
7.11.6;5. Conclusions;88
7.11.7;Acknowledgments;88
7.11.8;References;88
7.12;Chapter 12. Effects of deep levels and Si-doping on GalnP material properties investigated by means of optical methods;90
7.12.1;Abstract;90
7.12.2;1. Introduction;90
7.12.3;2. Experimental details;90
7.12.4;3. Results and discussion;91
7.12.5;4. Conclusions;92
7.12.6;Acknowledgment;93
7.12.7;References;93
7.13;Chapter 13. Optical properties of GaSb-AlSb heterostructures grown by molecular beam epitaxy;94
7.13.1;Abstract;94
7.13.2;1. Introduction;94
7.13.3;2. Experimental details;94
7.13.4;3. Homoepitaxy;94
7.13.5;4. GaSb-AlSb multiple quantum well on GaAs substrate;95
7.13.6;5. (Al)GaSb-AlSb Bragg mirror on GaAs substrate;96
7.13.7;6. Conclusion;97
7.13.8;References;97
7.14;Chapter 14. Absorption coefficient and exciton oscillator strengths in InGaAs/InP multi-quantum wells;98
7.14.1;Abstract;98
7.14.2;1. Introduction;98
7.14.3;2. Experimental details;98
7.14.4;3. Results and discussion;99
7.14.5;4. Conclusions;101
7.14.6;Acknowledgments;102
7.14.7;References;102
7.15;Chapter 15. MBE growth and properties of high quality Al(Ga)InAs/GaInAs MQW structures;103
7.15.1;Abstract;103
7.15.2;1. Introduction;103
7.15.3;2. MBE growth procedure;103
7.15.4;3. Characteristics of Al(Ga)InAs layers;103
7.15.5;4. Interface properties of Al(Ga)InAs/GaInAs heterojunctions;104
7.15.6;5. Optical quality of Al(Ga)In As/Gain As quantum well structures;104
7.15.7;6. Summary;106
7.15.8;Acknowledgment;106
7.15.9;References;106
7.16;Chapter 16. Influence of the cap layer thickness on the optical properties of near surface GalnAs/GaAs quantum wells;107
7.16.1;Abstract;107
7.16.2;References;109
7.17;Chapter 17. Intersubband transitions in InAs/AlSb quantum wells;110
7.17.1;Abstract;110
7.17.2;Acknowledgments;112
7.17.3;References;112
7.18;Chapter 18. Blue diode lasers and visible optoelectronic devices;114
7.18.1;Abstract;114
7.18.2;1. Introduction;114
7.18.3;2. Doping of ZnSe;114
7.18.4;3. Quantum well structures;115
7.18.5;4. Light emitting diodes;115
7.18.6;5. Laser diodes;116
7.18.7;6. Optoelectronic devices;117
7.18.8;7. Conclusions;118
7.18.9;Acknowledgments;118
7.18.10;References;118
7.19;Chapter 19. Aluminium-free 980 nm laser diodes;120
7.19.1;Abstract;120
7.19.2;1. Introduction;120
7.19.3;2. Layer structures;120
7.19.4;3. Laser diodes;122
7.19.5;4. Very high power lasers;124
7.19.6;Acknowledgments;125
7.19.7;References;125
7.20;Chapter 20. Shadow mask MBE for the fabrication of lead chalcogenide buried heterostructure lasers;126
7.20.1;Abstract;126
7.20.2;1. Introduction;126
7.20.3;2. Technology;126
7.20.4;3. Results;128
7.20.5;4. Conclusions;130
7.20.6;References;132
7.20.7;Acknowledgments;132
7.21;Chapter 21. Quantum confined Stark effect (QCSE) and self-electro-optic effect device (SEED) in II-VI heterostructures;133
7.21.1;Abstract;133
7.21.2;1. Introduction;133
7.21.3;2. Experiments and device specifications;133
7.21.4;3. The quantum confined Stark effect;134
7.21.5;4. Self-electro-optic effect device;135
7.21.6;5. Conclusion;136
7.21.7;Acknowledgments;136
7.21.8;References;136
7.22;Chapter 22. Growth of InAlGaAs multilayer structures for high power and submilliamp vertical cavity lasers;137
7.22.1;Abstract;137
7.22.2;1. Introduction;137
7.22.3;2. Growth of epitaxial layers and device processing;137
7.22.4;3. VCSEL characteristics;138
7.22.5;4. Short wavelength InAlGaAs quantum well laser diodes;139
7.22.6;5. Conclusion;139
7.22.7;Acknowledgement;140
7.22.8;References;140
7.23;Chapter 23. p-Dopant incorporation and influence on gain and damping behaviour in high-speed GaAs-based strained MQW lasers;141
7.23.1;Abstract;141
7.23.2;1. Introduction;141
7.23.3;2. Epitaxial layer structures;141
7.23.4;3. Laser fabrication and characterization;142
7.23.5;4. Gain spectra;144
7.23.6;5. Conclusions;145
7.23.7;Acknowledgments;145
7.23.8;References;145
7.24;Chapter 24. Experimental and theoretical studies of multi-quantum well structures for unipolar avalanche multiplication;146
7.24.1;Abstract;146
7.24.2;1. Introduction;146
7.24.3;2. Experimental results and discussion;146
7.24.4;3. Theoretical background;148
7.24.5;References;149
7.25;Chapter 25. Lateral thickness modulations in alternate tensile–compressive strained GalnAsP multilayers grown by gas source molecular beam epitaxy;150
7.25.1;Abstract;150
7.25.2;1. Introduction;150
7.25.3;2. Experimental details;150
7.25.4;3. Results;151
7.25.5;4. Discussion;151
7.25.6;5. Conclusions;152
7.25.7;References;152
7.26;Chapter 26. Growth and characterization of In0.53Ga0A1Asl\nxGdLX _ xAs strained-layer superlattices;153
7.26.1;Abstract;153
7.26.2;1. Introduction;153
7.26.3;2. Growth technique and corresponding results;154
7.26.4;3. Computational results;155
7.26.5;4. Optical data;156
7.26.6;5. Conclusion;157
7.26.7;References;157
7.27;Chapter 27. Metal-organic vapour-phase epitaxial growth of symmetrically strained (GaIn)As/Ga(PAs) superlattices;158
7.27.1;Abstract;158
7.27.2;1. Introduction;158
7.27.3;2. Experimental details;158
7.27.4;3. Results and discussion;159
7.27.5;4. Summary;161
7.27.6;Acknowledgments;161
7.27.7;References;161
7.28;Chapter 28. Strain effects on carrier lifetimes in InGaAs/(Al)GaAs multiple quantum wells;162
7.28.1;Abstract;162
7.28.2;1. Introduction;162
7.28.3;Acknowledgments;165
7.28.4;References;165
7.29;Chapter 29. Determination of residual strain by reflectivity, X-ray diffraction and Raman spectroscopy in ZnSe epilayers grown on GaAs(001), InP(001) and GaSb(001) by metal–organic vapor phase epitaxy;166
7.29.1;Abstract;166
7.29.2;1. Introduction;166
7.29.3;2. Experimental details;167
7.29.4;3. Results and discussion;167
7.29.5;4. Conclusion;169
7.29.6;References;170
7.30;Chapter 30. Characterization of heterointerfaces and surfaces in InSb on GaAs and in InAs/AlSb quantum wells;171
7.30.1;Abstract;171
7.30.2;Acknowledgments;174
7.30.3;References;174
7.31;Chapter 31. Improvements in the heteroepitaxial growth of GaAs on Si by MOVPE;175
7.31.1;Abstract;175
7.31.2;1. Introduction;175
7.31.3;2. Experimental details;175
7.31.4;3. Results and discussion;176
7.31.5;4. Summary;177
7.31.6;Acknowledgments;178
7.31.7;References;178
7.32;Chapter 32. Characterization of the heterostructure between heteroepitaxially grown ß-FeSi2 and (111) silicon;179
7.32.1;Abstract;179
7.32.2;1. Introduction;179
7.32.3;2. Sample preparation;179
7.32.4;3. Characterization of the ß-FeSi2-silicon heterostructure;180
7.32.5;4. Electrical properties of the heteroepitaxially grown ß-FeSi2 film;181
7.32.6;5. Electrical characterization of the ß-FeSi2/Si heterostructure;182
7.32.7;6. Summary and conclusions;182
7.32.8;References;182
7.33;Chapter 33. Optical investigation of interdiffusion in CdTe/CdMnTe quantum wells;183
7.33.1;Abstract;183
7.33.2;References;185
7.34;Chapter 34. Investigation of InGaAs/InP interdiffusion by simultaneous transmission electron microscopy and photoluminescence analysis;186
7.34.1;Abstract;186
7.34.2;1. Introduction;186
7.34.3;References;189
7.35;Chapter 35. Vacancy controlled interdiffusion in III-V heterostructures;190
7.35.1;Abstract;190
7.35.2;1. Introduction;190
7.35.3;2. Experimental method;190
7.35.4;3. Results and discussion;191
7.35.5;4. Conclusions;192
7.35.6;Acknowledgements;192
7.35.7;References;192
7.36;Chapter 36. Simulation of lateral Al recoil atoms and damage defects gradients in a GaAs/GaA1As quantum well created by masked ion implantation;193
7.36.1;Abstract;193
7.36.2;1. Introduction;193
7.36.3;2. Point response function;193
7.36.4;3. Two-dimensional distribution;194
7.36.5;4. Heterointerface mixing by ion implantation;194
7.36.6;5. Conclusion;196
7.36.7;Acknowledgments;196
7.36.8;References;196
7.37;Chapter 37. Strained InAs/AlxGa0.48 heterostructures: a tunable quantum well materials system for light emission from the near-IR to the mid-IR;197
7.37.1;Abstract;197
7.37.2;1. Introduction;197
7.37.3;2. Growth procedure;198
7.37.4;3. Spontaneous emission;198
7.37.5;4. Stimulated emission;200
7.37.6;5. Conclusion;200
7.37.7;Acknowledgments;201
7.37.8;References;201
7.38;Chapter 38. Chemical beam epitaxy and photoluminescence characteristics of InGaAsP/InP BRAQWET modulators;202
7.38.1;Abstract;202
7.38.2;1. Introduction;202
7.38.3;2. CBE Growth;202
7.38.4;3. Photoluminescence measurements under bias voltage;203
7.38.5;4. Optical properties;204
7.38.6;5. Conclusion;204
7.38.7;References;204
7.39;Chapter 39. Second harmonic generation via excitations between valence sub-bands in p-type GaAs-AlAs and Si-SiGe quantum well structures;205
7.39.1;Abstract;205
7.39.2;1. Introduction;205
7.39.3;2. Theory;205
7.39.4;3. Results;206
7.39.5;4. Conclusions;208
7.39.6;Acknowledgments;208
7.39.7;References;208
7.40;Chapter 40. An AlGaAs/GaAs OEIC structure for the integration of LEDs, MESFETs and photodetectors;209
7.40.1;Abstract;209
7.40.2;1. Introduction;209
7.40.3;2. Layer structure;209
7.40.4;3. Simulation ;210
7.40.5;4. Discussion and conclusions;211
7.40.6;References;212
7.41;Chapter 41. AlGalnP/GalnAs/GaAs MODFET devices: candidates for optoelectronic integrated circuits;213
7.41.1;Abstract;213
7.41.2;1. Introduction;213
7.41.3;2. Device fabrication;213
7.41.4;3. Results and discussion;214
7.41.5;4. Conclusions;215
7.41.6;Acknowledgment;215
7.41.7;References;215
7.42;Chapter 42. Photoluminescence and electroluminescence processes in Si1 _xGex/Si heterostructures grown by chemical vapor deposition;216
7.42.1;Abstract;216
7.42.2;1. Introduction;216
7.42.3;2. Rapid thermal chemical vapor deposition;216
7.42.4;3. Photoluminescence;217
7.42.5;4. Electroluminescence;218
7.42.6;5. Future directions;219
7.42.7;6. Summary;220
7.42.8;Acknowledgments;220
7.42.9;References;220
7.43;Chapter 43. Tunable infrared photoemission sensor on Si using epitaxial ErSi2/Si heterostructures;221
7.43.1;Abstract;221
7.43.2;Acknowledgments;224
7.43.3;References;224
7.44;Chapter 44. A study of PbSe heteroepitaxy on Si( 111) for IR optoelectronic applications;226
7.44.1;Abstract;226
7.44.2;1. Introduction;226
7.44.3;2. Structural properties of (Ba,Ca)F2 buffer layers;226
7.44.4;3. Structural and electrical properties of PbSe active layers;227
7.44.5;4. Preliminary device results;229
7.44.6;5. Conclusions;229
7.44.7;Acknowledgments;229
7.44.8;References;229
7.45;Chapter 45. Optical cross-sections and distribution of Fe2+ and Fe3+ in semiinsulating liquid encapsulated Czochralski grown InP:Fe;230
7.45.1;Abstract;230
7.45.2;1. Introduction;230
7.45.3;2. Crystal growth and preparation;230
7.45.4;3. Evaluation of optical cross-sections;230
7.45.5;4. Fe2+ and Fe3+ distribution in comparison with resistivity mapping;231
7.45.6;5. Summary;233
7.45.7;Acknowledgment;233
7.45.8;References;233
7.46;Chapter 46. Large negative persistent photoconductivity of bulk GaAs1 _ xPX (x = 0.02–0.03) single crystals;234
7.46.1;Abstract;234
7.46.2;1. Introduction;234
7.46.3;2. Crystal growth;235
7.46.4;3. Experimental results;235
7.46.5;4. Discussion;236
7.46.6;5. Conclusions;237
7.46.7;Acknowledgments;237
7.46.8;References;237
7.47;Chapter 47. Synthetic diamond: the optical band at 1.883 eV;238
7.47.1;Abstract;238
7.47.2;1. Introduction;238
7.47.3;2. Experimental details;238
7.47.4;3. Results and discussion;238
7.47.5;4. Summary;241
7.47.6;Acknowledgments;241
7.47.7;References;241
7.48;Chapter 48. Optical and transport properties in the electro-optical material CdIn2Te4;242
7.48.1;Abstract;242
7.48.2;1. Introduction;242
7.48.3;2. Experimental procedure;242
7.48.4;3. Optical and electrical properties;242
7.48.5;4. Discussion;244
7.48.6;5. Conclusion;245
7.48.7;Acknowledgments;245
7.48.8;References;245
7.48.9;Author Index of Volume 21, Issues 2–3;247
7.48.10;Subject Index of Volume 21, Issues 2–3;249
8;Part II: Symposium B on Low Temperature Molecular Beam Epitaxial III-V Materials: Physics and Applications;256
8.1;Preface;258
8.2;Organizers and Sponsors;259
8.3;Chapter 49. Basic principles governing the surface atomic structure of zinc blende semiconductors;260
8.3.1;Abstract;260
8.3.2;1. Introduction;260
8.3.3;2. The nature of ó,p and dangling bonds;260
8.3.4;3. First set of rules;261
8.3.5;4. Results for covalent surfaces;262
8.3.6;5. Further rules for compound zinc blende semiconductors;263
8.3.7;6. Non-polar (110) surfaces;264
8.3.8;7. Polar surfaces;264
8.3.9;References;266
8.3.10;8. Conclusions;266
8.4;Chapter 50. LTMBE GaAs: present status and perspectives;268
8.4.1;Abstract;268
8.4.2;1. Background;268
8.4.3;2. Basic features of LTMBE GaAs;268
8.4.4;3. Models for LT MBE GaAs;269
8.4.5;4. The effects of growth and annealing conditions;270
8.4.6;5. Optical properties;271
8.4.7;6. Extensions of LT growth to other materials;271
8.4.8;7. Electronic applications of LT GaAs;272
8.4.9;8. Concluding remarks;273
8.4.10;Acknowledgments;273
8.4.11;References;273
8.5;Chapter 51. Point defects in III-V materials grown by molecular beam epitaxy at low temperature;275
8.5.1;Abstract;275
8.5.2;1. Introduction;275
8.5.3;2. Point defects in LT GaAs;275
8.5.4;3. Point defects in LT InP;276
8.5.5;4. Positron annihilation technique;276
8.5.6;5. Results on LT MBE GaAs;277
8.5.7;6. Results on LT MBE InP;279
8.5.8;7. Summary;280
8.5.9;Acknowledgments;280
8.5.10;References;280
8.6;Chapter 52. Gallium vacancy related defects in silicon doped GaAs grown at low temperatures;282
8.6.1;Abstract;282
8.6.2;1. Introduction;282
8.6.3;2. Experiment;282
8.6.4;3. Results;283
8.6.5;4. Discussion;284
8.6.6;Acknowledgment;284
8.6.7;References;284
8.7;Chapter 53. EL2-like defects in low temperature GaAs;286
8.7.1;Abstract;286
8.7.2;1. Introduction;286
8.7.3;2. Samples;286
8.7.4;3. Optical experiments;286
8.7.5;4. X-ray experiments;287
8.7.6;5. Discussion;288
8.7.7;References;288
8.8;Chapter 54. GaAs, AlGaAs, and InGaAs epilayers containing As clusters: semimetal/semiconductor composites;290
8.8.1;Abstract;290
8.8.2;1. Introduction;290
8.8.3;2. Composite formation;290
8.8.4;3. Cluster formation at heterojunctions;291
8.8.5;4. Controlling cluster formation with doping;293
8.8.6;5. Conclusions;294
8.8.7;Acknowledgment;294
8.8.8;References;294
8.9;Chapter 55. Semi-insulating GaAs made by As implantation and thermal annealing;296
8.9.1;Abstract;296
8.9.2;1. Introduction;296
8.9.3;2. General procedure;297
8.9.4;3. Formation and crystallography of the precipitates;297
8.9.5;4. Electrical characteristics;298
8.9.6;5. Epilayer growth on As-implanted substrates;298
8.9.7;6. Conclusions;298
8.9.8;Acknowledgments;299
8.9.9;References;299
8.10;Chapter 56. Electro-optical measurement of low temperature GaAs;300
8.10.1;Abstract;300
8.10.2;1. Introduction;300
8.10.3;2. The samples;300
8.10.4;3. Results and discussion;300
8.10.5;4. Conclusions;302
8.10.6;Acknowledgments;303
8.10.7;References;303
8.11;Chapter 57. Extended defects and precipitates in LT-GaAs, LT-InAlAs and LT-InP;304
8.11.1;Abstract;304
8.11.2;1. Introduction;304
8.11.3;2. LT-GaAs;304
8.11.4;3. LT-InAlAs;309
8.11.5;4. LT-InP;310
8.11.6;5. Conclusions;312
8.11.7;Acknowledgments;312
8.11.8;References;313
8.12;Chapter 58. Interfacial barrier characteristics of LT-GaAs on low doped GaAs layers;314
8.12.1;Abstract;314
8.12.2;1. Introduction;314
8.12.3;2. Method and experimental procedure;314
8.12.4;3. Device fabrication;315
8.12.5;4. Results;315
8.12.6;5. Discussion and conclusion;318
8.12.7;Acknowledgments;319
8.12.8;References;319
8.13;Chapter 59. Optoelectronic applications of LTMBE III-V materials;320
8.13.1;Abstract;320
8.13.2;1. Introduction;320
8.13.3;2. Ultrashort carrier lifetime;321
8.13.4;3. LT-GaAs photodetectors and photoswitches;322
8.13.5;4. Low-temperature-grown InxGa1-xAs;324
8.13.6;5. Conclusions;325
8.13.7;Acknowledgments;325
8.13.8;References;325
8.14;Chapter 60. Subpicosecond electric field dynamics in low-temperature-grown GaAs observed by reflective electro-optic sampling;327
8.14.1;Abstract;327
8.14.2;1. Introduction;327
8.14.3;2. Reflective electro-optic sampling;327
8.14.4;3. Electric field and carrier dynamics;328
8.14.5;4. Carrier lifetime in trapped states;328
8.14.6;5. Coherent LO phonon dynamics;329
8.14.7;6. Conclusions;329
8.14.8;References;329
8.15;Chapter 61. Applications of GaAs grown at a low temperature by molecular beam epitaxy;331
8.15.1;Abstract;331
8.15.2;1. Electronic materials properties;331
8.15.3;2. Applications;333
8.15.4;3. Microwave power MESFET;334
8.15.5;4. Conclusion;335
8.15.6;Acknowledgments;336
8.15.7;References;336
8.16;Chapter 62. Temperature measurements of LT GaAs diodes;337
8.16.1;Abstract;337
8.16.2;1. Introduction;337
8.16.3;2. Material growth;337
8.16.4;3. Metal-insulator-semiconductor diode fabrication and measurements;338
8.16.5;4. Discussion;338
8.16.6;5. Conclusion;339
8.16.7;Acknowledgment;339
8.16.8;References;339
8.17;Chapter 63. Noise studies of HFETs on low temperature grown GaAs buffers and of MESFETs with low temperature grown GaAs passivation;341
8.17.1;Abstract;341
8.17.2;1. Introduction;341
8.17.3;2. Low-frequency noise in HFETs;341
8.17.4;3. Phase noise in MESFETs;342
8.17.5;4. Channel noise;343
8.17.6;5. Conclusion;344
8.17.7;References;344
8.18;Chapter 64. Electrical conduction in low temperature grown InP;345
8.18.1;Abstract;345
8.18.2;1. Introduction;345
8.18.3;2. Material;345
8.18.4;3. Results;346
8.18.5;4. Discussion;346
8.18.6;5. Conclusions;346
8.18.7;References;347
8.19;Chapter 65. Low temperature molecular beam epitaxy of Al(Ga)InAs on InP and its application to high electron mobility transistor structures;348
8.19.1;Abstract;348
8.19.2;1. Introduction;348
8.19.3;2. Molecular beam epitaxy growth procedure;348
8.19.4;3. Electrical characteristics of LT-Al(Ga)InAs;348
8.19.5;4. Doping behaviour of LT-AllnAs: Si;349
8.19.6;5. Deep levels in LT-Al(Ga)InAs;349
8.19.7;6. Annealing behaviour of LT-Al(Ga)InAs;350
8.19.8;7. Application of LT-AlInAs to high electron mobility transistor structures;350
8.19.9;8. Summary;351
8.19.10;Acknowledgment;351
8.19.11;References;351
8.20;Chapter 66. Photo-induced current transient spectroscopy of Al0.48In0.52As semi-insulating layers grown on InP by molecular beam epitaxy;352
8.20.1;Abstract;352
8.20.2;1. Introduction;352
8.20.3;2. Experimental details;352
8.20.4;3. Results and discussion;353
8.20.5;4. Conclusion;355
8.20.6;Acknowledgments;355
8.20.7;References;355
8.21;Chapter 67. Low temperature chemical beam epitaxy of gallium phosphide/silicon heterostructures;356
8.21.1;Abstract;356
8.21.2;1. Introduction;356
8.21.3;2. Experimental conditions;356
8.21.4;3. Results;357
8.21.5;4. Discussion;359
8.21.6;5. Conclusion;360
8.21.7;Acknowledgments;360
8.21.8;References;360
8.21.9;Author Index of Volume 22, Number 1;362
8.21.10;Subject Index of Volume 22, Number 1;363