Hirtz / Whitehouse / Meier | Semiconductor Materials for Optoelectronics and LTMBE Materials | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 40, 365 Seiten, Web PDF

Reihe: European Materials Research Society Symposia Proceedings

Hirtz / Whitehouse / Meier Semiconductor Materials for Optoelectronics and LTMBE Materials

Proceedings: Symposium A: Semiconductor Materials for Optoelectronic Devices/OEICs/Photonics and Symposium B: Low Temperature Molecular Beam Epitaxial III-V Materials: Physics/Applications of 1993 E-MRS Spring Conference Strasbourg, France, May ...
1. Auflage 2016
ISBN: 978-1-4832-9042-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings: Symposium A: Semiconductor Materials for Optoelectronic Devices/OEICs/Photonics and Symposium B: Low Temperature Molecular Beam Epitaxial III-V Materials: Physics/Applications of 1993 E-MRS Spring Conference Strasbourg, France, May ...

E-Book, Englisch, Band Volume 40, 365 Seiten, Web PDF

Reihe: European Materials Research Society Symposia Proceedings

ISBN: 978-1-4832-9042-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



These three day symposia were designed to provide a link between specialists from university or industry who work in different fields of semiconductor optoelectronics. Symposium A dealt with topics including: epitaxial growth of III-V, II-VI, IV-VI, Si-based structures; selective-area, localized and non-planar epitaxy, shadow-mask epitaxy; bulk and new optoelectronic materials; polymers for optoelectronics.Symposium B dealt with III-V epitaxial layers grown by low temperature molecular beam epitaxy, a subject which has undergone rapid development in the last three years.

Hirtz / Whitehouse / Meier Semiconductor Materials for Optoelectronics and LTMBE Materials jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Semiconductor Materials for Optoelectronics and Ltmbe Materials;4
3;Copyright Page;5
4;Table of Contents;6
5;Preface;14
6;Organizers and Sponsors;15
7;Part I: Symposium A on Semiconductor Materials for Optoelectronic Devices, OEICs and Photonics;12
7.1;Chapter 1. Stoichiometry of III-V compounds;16
7.1.1;Abstract;16
7.1.2;1. Introduction;16
7.1.3;2. Annealing effects on GaAs crystals under As vapour pressure;17
7.1.4;3. Liquid phase epitaxial growth by the temperature difference method under controlled vapour pressure;20
7.1.5;4. Surface treatment before regrowth of GaAs by molecular layer epitaxy and its association with the surface stoichiometry;21
7.1.6;5. Interstitial As atoms in GaAs;22
7.1.7;6. GaAs bulk crystal growth by the vapour-pressurecontrolled Czochralski (PCZ) method;24
7.1.8;7. GaAs bulk crystal grown by the vapourpressure- controlled float zone method;25
7.1.9;8. InP bulk crystal growth by the vapour-pressurecontrolled zone-melting method;26
7.1.10;9. GaP pure green LED without nitrogen doping;26
7.1.11;10. GaAlAs very bright LED;26
7.1.12;11. Theoretical consideration of stoichiometry control through solution;27
7.1.13;12. Summary;27
7.1.14;References;28
7.2;Chapter 2. Evaluation of III-V growth technologies for optoelectronic applications;29
7.2.1;Abstract;29
7.2.2;1. Introduction;29
7.2.3;2. Application fields of the growth technologies;29
7.2.4;3. Integration of technologies;35
7.2.5;4. Conclusion;36
7.2.6;References;37
7.3;Chapter 3. Selective and non-planar epitaxy of InP/GaInAs(P) by MOCVD;39
7.3.1;Abstract;39
7.3.2;1. Introduction;39
7.3.3;2. Experimental conditions;40
7.3.4;3. Selective-area epitaxy;40
7.3.5;4. Non-planar epitaxy;47
7.3.6;5. Device applications;50
7.3.7;6. Conclusions;54
7.3.8;Acknowledgments;55
7.3.9;References;55
7.4;Chapter 4. ESPRIT MORSE: research for novel metal-organic precursors;56
7.4.1;Abstract;56
7.4.2;1. Introduction;56
7.4.3;2. Novel aluminum precursors;56
7.4.4;3. Novel indium precursors;58
7.4.5;4. Novel phosphorus precursors;58
7.4.6;5. Novel arsenic precursors;59
7.4.7;6. Device results;60
7.4.8;7. Summary and outlook;60
7.4.9;Acknowledgment;61
7.4.10;References;61
7.5;Chapter 5. MBE regrowth of GaAs/AlGaAs structures on RIE patterned substrates;62
7.5.1;Abstract;62
7.5.2;1. Introduction;62
7.5.3;2. MBE regrowth on dry etched surfaces;62
7.5.4;3. Direct growth of nanostructures;63
7.5.5;4. Regrowth on shallow etched structures;64
7.5.6;5. Summary;64
7.5.7;Acknowledgment;65
7.5.8;References;65
7.6;Chapter 6. Improved method for GaAs-(Ga,Al)As epitaxial regrowth;66
7.6.1;Abstract;66
7.6.2;1. Introduction;66
7.6.3;2. Experimental details;66
7.6.4;3. Results and discussion;67
7.6.5;4. Conclusions;68
7.6.6;Acknowledgements;69
7.6.7;References;69
7.7;Chapter 7. Investigation of MOVPE-grown In0 53Ga047As/InP multi-quantum wells by Raman spectroscopy and X-ray diffractometry;70
7.7.1;Abstract;70
7.7.2;1. Introduction;70
7.7.3;2. Experimental set-up;71
7.7.4;3. Results and discussion;71
7.7.5;4. Conclusions;73
7.7.6;References;73
7.8;Chapter 8. Chemical beam epitaxy of high purity InP using tertiarybutylphosphine and 1,2 bis-phosphinoethane;74
7.8.1;Abstract;74
7.8.2;1. Introduction;74
7.8.3;2. Thermal decomposition of TBP and BPE;74
7.8.4;3. Growth and characterization of InP layers;75
7.8.5;4. Conclusions;76
7.8.6;Acknowledgments;77
7.8.7;References;77
7.9;Chapter 9. Optical characterization of extremely high purity ZnSe grown by metal-organic vapour phase epitaxy using dimethylzinc-triethylamine adduct;78
7.9.1;Abstract;78
7.9.2;1. Introduction;78
7.9.3;2. Experimental details;79
7.9.4;3. Results;79
7.9.5;4. Conclusion;81
7.9.6;Acknowledgment;81
7.9.7;References;82
7.10;Chapter 10. Spectroscopic ellipsometry: a useful tool to determine the refractive indices and interfaces of In0.52Al0.48As and In0.53AlxGa0.
47_xAs layers on InP in the wavelength range 280-1900 nm;83
7.10.1;Abstract;83
7.10.2;1. Introduction;83
7.10.3;2. MBE-growth;83
7.10.4;3. Spectroscopic ellipsometry;84
7.10.5;4. Conclusions;85
7.10.6;References;85
7.11;Chapter 11. Room temperature photoreflectance as a powerful tool to characterize the crystalline quality of InAlAs layers grown on InP substrates;86
7.11.1;Abstract;86
7.11.2;1. Introduction;86
7.11.3;2. Experimental details;86
7.11.4;3. Fitting procedure;87
7.11.5;4. Results and discussion;87
7.11.6;5. Conclusions;88
7.11.7;Acknowledgments;88
7.11.8;References;88
7.12;Chapter 12. Effects of deep levels and Si-doping on GalnP material properties investigated by means of optical methods;90
7.12.1;Abstract;90
7.12.2;1. Introduction;90
7.12.3;2. Experimental details;90
7.12.4;3. Results and discussion;91
7.12.5;4. Conclusions;92
7.12.6;Acknowledgment;93
7.12.7;References;93
7.13;Chapter 13. Optical properties of GaSb-AlSb heterostructures grown by molecular beam epitaxy;94
7.13.1;Abstract;94
7.13.2;1. Introduction;94
7.13.3;2. Experimental details;94
7.13.4;3. Homoepitaxy;94
7.13.5;4. GaSb-AlSb multiple quantum well on GaAs substrate;95
7.13.6;5. (Al)GaSb-AlSb Bragg mirror on GaAs substrate;96
7.13.7;6. Conclusion;97
7.13.8;References;97
7.14;Chapter 14. Absorption coefficient and exciton oscillator strengths in InGaAs/InP multi-quantum wells;98
7.14.1;Abstract;98
7.14.2;1. Introduction;98
7.14.3;2. Experimental details;98
7.14.4;3. Results and discussion;99
7.14.5;4. Conclusions;101
7.14.6;Acknowledgments;102
7.14.7;References;102
7.15;Chapter 15. MBE growth and properties of high quality Al(Ga)InAs/GaInAs MQW structures;103
7.15.1;Abstract;103
7.15.2;1. Introduction;103
7.15.3;2. MBE growth procedure;103
7.15.4;3. Characteristics of Al(Ga)InAs layers;103
7.15.5;4. Interface properties of Al(Ga)InAs/GaInAs heterojunctions;104
7.15.6;5. Optical quality of Al(Ga)In As/Gain As quantum well structures;104
7.15.7;6. Summary;106
7.15.8;Acknowledgment;106
7.15.9;References;106
7.16;Chapter 16. Influence of the cap layer thickness on the optical properties of near surface GalnAs/GaAs quantum wells;107
7.16.1;Abstract;107
7.16.2;References;109
7.17;Chapter 17. Intersubband transitions in InAs/AlSb quantum wells;110
7.17.1;Abstract;110
7.17.2;Acknowledgments;112
7.17.3;References;112
7.18;Chapter 18. Blue diode lasers and visible optoelectronic devices;114
7.18.1;Abstract;114
7.18.2;1. Introduction;114
7.18.3;2. Doping of ZnSe;114
7.18.4;3. Quantum well structures;115
7.18.5;4. Light emitting diodes;115
7.18.6;5. Laser diodes;116
7.18.7;6. Optoelectronic devices;117
7.18.8;7. Conclusions;118
7.18.9;Acknowledgments;118
7.18.10;References;118
7.19;Chapter 19. Aluminium-free 980 nm laser diodes;120
7.19.1;Abstract;120
7.19.2;1. Introduction;120
7.19.3;2. Layer structures;120
7.19.4;3. Laser diodes;122
7.19.5;4. Very high power lasers;124
7.19.6;Acknowledgments;125
7.19.7;References;125
7.20;Chapter 20. Shadow mask MBE for the fabrication of lead chalcogenide buried heterostructure lasers;126
7.20.1;Abstract;126
7.20.2;1. Introduction;126
7.20.3;2. Technology;126
7.20.4;3. Results;128
7.20.5;4. Conclusions;130
7.20.6;References;132
7.20.7;Acknowledgments;132
7.21;Chapter 21. Quantum confined Stark effect (QCSE) and self-electro-optic effect device (SEED) in II-VI heterostructures;133
7.21.1;Abstract;133
7.21.2;1. Introduction;133
7.21.3;2. Experiments and device specifications;133
7.21.4;3. The quantum confined Stark effect;134
7.21.5;4. Self-electro-optic effect device;135
7.21.6;5. Conclusion;136
7.21.7;Acknowledgments;136
7.21.8;References;136
7.22;Chapter 22. Growth of InAlGaAs multilayer structures for high power and submilliamp vertical cavity lasers;137
7.22.1;Abstract;137
7.22.2;1. Introduction;137
7.22.3;2. Growth of epitaxial layers and device processing;137
7.22.4;3. VCSEL characteristics;138
7.22.5;4. Short wavelength InAlGaAs quantum well laser diodes;139
7.22.6;5. Conclusion;139
7.22.7;Acknowledgement;140
7.22.8;References;140
7.23;Chapter 23. p-Dopant incorporation and influence on gain and damping behaviour in high-speed GaAs-based strained MQW lasers;141
7.23.1;Abstract;141
7.23.2;1. Introduction;141
7.23.3;2. Epitaxial layer structures;141
7.23.4;3. Laser fabrication and characterization;142
7.23.5;4. Gain spectra;144
7.23.6;5. Conclusions;145
7.23.7;Acknowledgments;145
7.23.8;References;145
7.24;Chapter 24. Experimental and theoretical studies of multi-quantum well structures for unipolar avalanche multiplication;146
7.24.1;Abstract;146
7.24.2;1. Introduction;146
7.24.3;2. Experimental results and discussion;146
7.24.4;3. Theoretical background;148
7.24.5;References;149
7.25;Chapter 25. Lateral thickness modulations in alternate tensile–compressive strained GalnAsP multilayers grown by gas source molecular beam epitaxy;150
7.25.1;Abstract;150
7.25.2;1. Introduction;150
7.25.3;2. Experimental details;150
7.25.4;3. Results;151
7.25.5;4. Discussion;151
7.25.6;5. Conclusions;152
7.25.7;References;152
7.26;Chapter 26. Growth and characterization of In0.53Ga0A1Asl\nxGdLX _ xAs strained-layer superlattices;153
7.26.1;Abstract;153
7.26.2;1. Introduction;153
7.26.3;2. Growth technique and corresponding results;154
7.26.4;3. Computational results;155
7.26.5;4. Optical data;156
7.26.6;5. Conclusion;157
7.26.7;References;157
7.27;Chapter 27. Metal-organic vapour-phase epitaxial growth of symmetrically strained (GaIn)As/Ga(PAs) superlattices;158
7.27.1;Abstract;158
7.27.2;1. Introduction;158
7.27.3;2. Experimental details;158
7.27.4;3. Results and discussion;159
7.27.5;4. Summary;161
7.27.6;Acknowledgments;161
7.27.7;References;161
7.28;Chapter 28. Strain effects on carrier lifetimes in InGaAs/(Al)GaAs multiple quantum wells;162
7.28.1;Abstract;162
7.28.2;1. Introduction;162
7.28.3;Acknowledgments;165
7.28.4;References;165
7.29;Chapter 29. Determination of residual strain by reflectivity, X-ray diffraction and Raman spectroscopy in ZnSe epilayers grown on GaAs(001), InP(001) and GaSb(001) by metal–organic vapor phase epitaxy;166
7.29.1;Abstract;166
7.29.2;1. Introduction;166
7.29.3;2. Experimental details;167
7.29.4;3. Results and discussion;167
7.29.5;4. Conclusion;169
7.29.6;References;170
7.30;Chapter 30. Characterization of heterointerfaces and surfaces in InSb on GaAs and in InAs/AlSb quantum wells;171
7.30.1;Abstract;171
7.30.2;Acknowledgments;174
7.30.3;References;174
7.31;Chapter 31. Improvements in the heteroepitaxial growth of GaAs on Si by MOVPE;175
7.31.1;Abstract;175
7.31.2;1. Introduction;175
7.31.3;2. Experimental details;175
7.31.4;3. Results and discussion;176
7.31.5;4. Summary;177
7.31.6;Acknowledgments;178
7.31.7;References;178
7.32;Chapter 32. Characterization of the heterostructure between heteroepitaxially grown ß-FeSi2 and (111) silicon;179
7.32.1;Abstract;179
7.32.2;1. Introduction;179
7.32.3;2. Sample preparation;179
7.32.4;3. Characterization of the ß-FeSi2-silicon heterostructure;180
7.32.5;4. Electrical properties of the heteroepitaxially grown ß-FeSi2 film;181
7.32.6;5. Electrical characterization of the ß-FeSi2/Si heterostructure;182
7.32.7;6. Summary and conclusions;182
7.32.8;References;182
7.33;Chapter 33. Optical investigation of interdiffusion in CdTe/CdMnTe quantum wells;183
7.33.1;Abstract;183
7.33.2;References;185
7.34;Chapter 34. Investigation of InGaAs/InP interdiffusion by simultaneous transmission electron microscopy and photoluminescence analysis;186
7.34.1;Abstract;186
7.34.2;1. Introduction;186
7.34.3;References;189
7.35;Chapter 35. Vacancy controlled interdiffusion in III-V heterostructures;190
7.35.1;Abstract;190
7.35.2;1. Introduction;190
7.35.3;2. Experimental method;190
7.35.4;3. Results and discussion;191
7.35.5;4. Conclusions;192
7.35.6;Acknowledgements;192
7.35.7;References;192
7.36;Chapter 36. Simulation of lateral Al recoil atoms and damage defects gradients in a GaAs/GaA1As quantum well created by masked ion implantation;193
7.36.1;Abstract;193
7.36.2;1. Introduction;193
7.36.3;2. Point response function;193
7.36.4;3. Two-dimensional distribution;194
7.36.5;4. Heterointerface mixing by ion implantation;194
7.36.6;5. Conclusion;196
7.36.7;Acknowledgments;196
7.36.8;References;196
7.37;Chapter 37. Strained InAs/AlxGa0.48 heterostructures: a tunable quantum well materials system for light emission from the near-IR to the mid-IR;197
7.37.1;Abstract;197
7.37.2;1. Introduction;197
7.37.3;2. Growth procedure;198
7.37.4;3. Spontaneous emission;198
7.37.5;4. Stimulated emission;200
7.37.6;5. Conclusion;200
7.37.7;Acknowledgments;201
7.37.8;References;201
7.38;Chapter 38. Chemical beam epitaxy and photoluminescence characteristics of InGaAsP/InP BRAQWET modulators;202
7.38.1;Abstract;202
7.38.2;1. Introduction;202
7.38.3;2. CBE Growth;202
7.38.4;3. Photoluminescence measurements under bias voltage;203
7.38.5;4. Optical properties;204
7.38.6;5. Conclusion;204
7.38.7;References;204
7.39;Chapter 39. Second harmonic generation via excitations between valence sub-bands in p-type GaAs-AlAs and Si-SiGe quantum well structures;205
7.39.1;Abstract;205
7.39.2;1. Introduction;205
7.39.3;2. Theory;205
7.39.4;3. Results;206
7.39.5;4. Conclusions;208
7.39.6;Acknowledgments;208
7.39.7;References;208
7.40;Chapter 40. An AlGaAs/GaAs OEIC structure for the integration of LEDs, MESFETs and photodetectors;209
7.40.1;Abstract;209
7.40.2;1. Introduction;209
7.40.3;2. Layer structure;209
7.40.4;3. Simulation ;210
7.40.5;4. Discussion and conclusions;211
7.40.6;References;212
7.41;Chapter 41. AlGalnP/GalnAs/GaAs MODFET devices: candidates for optoelectronic integrated circuits;213
7.41.1;Abstract;213
7.41.2;1. Introduction;213
7.41.3;2. Device fabrication;213
7.41.4;3. Results and discussion;214
7.41.5;4. Conclusions;215
7.41.6;Acknowledgment;215
7.41.7;References;215
7.42;Chapter 42. Photoluminescence and electroluminescence processes in Si1 _xGex/Si heterostructures grown by chemical vapor deposition;216
7.42.1;Abstract;216
7.42.2;1. Introduction;216
7.42.3;2. Rapid thermal chemical vapor deposition;216
7.42.4;3. Photoluminescence;217
7.42.5;4. Electroluminescence;218
7.42.6;5. Future directions;219
7.42.7;6. Summary;220
7.42.8;Acknowledgments;220
7.42.9;References;220
7.43;Chapter 43. Tunable infrared photoemission sensor on Si using epitaxial ErSi2/Si heterostructures;221
7.43.1;Abstract;221
7.43.2;Acknowledgments;224
7.43.3;References;224
7.44;Chapter 44. A study of PbSe heteroepitaxy on Si( 111) for IR optoelectronic applications;226
7.44.1;Abstract;226
7.44.2;1. Introduction;226
7.44.3;2. Structural properties of (Ba,Ca)F2 buffer layers;226
7.44.4;3. Structural and electrical properties of PbSe active layers;227
7.44.5;4. Preliminary device results;229
7.44.6;5. Conclusions;229
7.44.7;Acknowledgments;229
7.44.8;References;229
7.45;Chapter 45. Optical cross-sections and distribution of Fe2+ and Fe3+ in semiinsulating liquid encapsulated Czochralski grown InP:Fe;230
7.45.1;Abstract;230
7.45.2;1. Introduction;230
7.45.3;2. Crystal growth and preparation;230
7.45.4;3. Evaluation of optical cross-sections;230
7.45.5;4. Fe2+ and Fe3+ distribution in comparison with resistivity mapping;231
7.45.6;5. Summary;233
7.45.7;Acknowledgment;233
7.45.8;References;233
7.46;Chapter 46. Large negative persistent photoconductivity of bulk GaAs1 _ xPX (x = 0.02–0.03) single crystals;234
7.46.1;Abstract;234
7.46.2;1. Introduction;234
7.46.3;2. Crystal growth;235
7.46.4;3. Experimental results;235
7.46.5;4. Discussion;236
7.46.6;5. Conclusions;237
7.46.7;Acknowledgments;237
7.46.8;References;237
7.47;Chapter 47. Synthetic diamond: the optical band at 1.883 eV;238
7.47.1;Abstract;238
7.47.2;1. Introduction;238
7.47.3;2. Experimental details;238
7.47.4;3. Results and discussion;238
7.47.5;4. Summary;241
7.47.6;Acknowledgments;241
7.47.7;References;241
7.48;Chapter 48. Optical and transport properties in the electro-optical material CdIn2Te4;242
7.48.1;Abstract;242
7.48.2;1. Introduction;242
7.48.3;2. Experimental procedure;242
7.48.4;3. Optical and electrical properties;242
7.48.5;4. Discussion;244
7.48.6;5. Conclusion;245
7.48.7;Acknowledgments;245
7.48.8;References;245
7.48.9;Author Index of Volume 21, Issues 2–3;247
7.48.10;Subject Index of Volume 21, Issues 2–3;249
8;Part II: Symposium B on Low Temperature Molecular Beam Epitaxial III-V Materials: Physics and Applications;256
8.1;Preface;258
8.2;Organizers and Sponsors;259
8.3;Chapter 49. Basic principles governing the surface atomic structure of zinc blende semiconductors;260
8.3.1;Abstract;260
8.3.2;1. Introduction;260
8.3.3;2. The nature of ó,p and dangling bonds;260
8.3.4;3. First set of rules;261
8.3.5;4. Results for covalent surfaces;262
8.3.6;5. Further rules for compound zinc blende semiconductors;263
8.3.7;6. Non-polar (110) surfaces;264
8.3.8;7. Polar surfaces;264
8.3.9;References;266
8.3.10;8. Conclusions;266
8.4;Chapter 50. LTMBE GaAs: present status and perspectives;268
8.4.1;Abstract;268
8.4.2;1. Background;268
8.4.3;2. Basic features of LTMBE GaAs;268
8.4.4;3. Models for LT MBE GaAs;269
8.4.5;4. The effects of growth and annealing conditions;270
8.4.6;5. Optical properties;271
8.4.7;6. Extensions of LT growth to other materials;271
8.4.8;7. Electronic applications of LT GaAs;272
8.4.9;8. Concluding remarks;273
8.4.10;Acknowledgments;273
8.4.11;References;273
8.5;Chapter 51. Point defects in III-V materials grown by molecular beam epitaxy at low temperature;275
8.5.1;Abstract;275
8.5.2;1. Introduction;275
8.5.3;2. Point defects in LT GaAs;275
8.5.4;3. Point defects in LT InP;276
8.5.5;4. Positron annihilation technique;276
8.5.6;5. Results on LT MBE GaAs;277
8.5.7;6. Results on LT MBE InP;279
8.5.8;7. Summary;280
8.5.9;Acknowledgments;280
8.5.10;References;280
8.6;Chapter 52. Gallium vacancy related defects in silicon doped GaAs grown at low temperatures;282
8.6.1;Abstract;282
8.6.2;1. Introduction;282
8.6.3;2. Experiment;282
8.6.4;3. Results;283
8.6.5;4. Discussion;284
8.6.6;Acknowledgment;284
8.6.7;References;284
8.7;Chapter 53. EL2-like defects in low temperature GaAs;286
8.7.1;Abstract;286
8.7.2;1. Introduction;286
8.7.3;2. Samples;286
8.7.4;3. Optical experiments;286
8.7.5;4. X-ray experiments;287
8.7.6;5. Discussion;288
8.7.7;References;288
8.8;Chapter 54. GaAs, AlGaAs, and InGaAs epilayers containing As clusters: semimetal/semiconductor composites;290
8.8.1;Abstract;290
8.8.2;1. Introduction;290
8.8.3;2. Composite formation;290
8.8.4;3. Cluster formation at heterojunctions;291
8.8.5;4. Controlling cluster formation with doping;293
8.8.6;5. Conclusions;294
8.8.7;Acknowledgment;294
8.8.8;References;294
8.9;Chapter 55. Semi-insulating GaAs made by As implantation and thermal annealing;296
8.9.1;Abstract;296
8.9.2;1. Introduction;296
8.9.3;2. General procedure;297
8.9.4;3. Formation and crystallography of the precipitates;297
8.9.5;4. Electrical characteristics;298
8.9.6;5. Epilayer growth on As-implanted substrates;298
8.9.7;6. Conclusions;298
8.9.8;Acknowledgments;299
8.9.9;References;299
8.10;Chapter 56. Electro-optical measurement of low temperature GaAs;300
8.10.1;Abstract;300
8.10.2;1. Introduction;300
8.10.3;2. The samples;300
8.10.4;3. Results and discussion;300
8.10.5;4. Conclusions;302
8.10.6;Acknowledgments;303
8.10.7;References;303
8.11;Chapter 57. Extended defects and precipitates in LT-GaAs, LT-InAlAs and LT-InP;304
8.11.1;Abstract;304
8.11.2;1. Introduction;304
8.11.3;2. LT-GaAs;304
8.11.4;3. LT-InAlAs;309
8.11.5;4. LT-InP;310
8.11.6;5. Conclusions;312
8.11.7;Acknowledgments;312
8.11.8;References;313
8.12;Chapter 58. Interfacial barrier characteristics of LT-GaAs on low doped GaAs layers;314
8.12.1;Abstract;314
8.12.2;1. Introduction;314
8.12.3;2. Method and experimental procedure;314
8.12.4;3. Device fabrication;315
8.12.5;4. Results;315
8.12.6;5. Discussion and conclusion;318
8.12.7;Acknowledgments;319
8.12.8;References;319
8.13;Chapter 59. Optoelectronic applications of LTMBE III-V materials;320
8.13.1;Abstract;320
8.13.2;1. Introduction;320
8.13.3;2. Ultrashort carrier lifetime;321
8.13.4;3. LT-GaAs photodetectors and photoswitches;322
8.13.5;4. Low-temperature-grown InxGa1-xAs;324
8.13.6;5. Conclusions;325
8.13.7;Acknowledgments;325
8.13.8;References;325
8.14;Chapter 60. Subpicosecond electric field dynamics in low-temperature-grown GaAs observed by reflective electro-optic sampling;327
8.14.1;Abstract;327
8.14.2;1. Introduction;327
8.14.3;2. Reflective electro-optic sampling;327
8.14.4;3. Electric field and carrier dynamics;328
8.14.5;4. Carrier lifetime in trapped states;328
8.14.6;5. Coherent LO phonon dynamics;329
8.14.7;6. Conclusions;329
8.14.8;References;329
8.15;Chapter 61. Applications of GaAs grown at a low temperature by molecular beam epitaxy;331
8.15.1;Abstract;331
8.15.2;1. Electronic materials properties;331
8.15.3;2. Applications;333
8.15.4;3. Microwave power MESFET;334
8.15.5;4. Conclusion;335
8.15.6;Acknowledgments;336
8.15.7;References;336
8.16;Chapter 62. Temperature measurements of LT GaAs diodes;337
8.16.1;Abstract;337
8.16.2;1. Introduction;337
8.16.3;2. Material growth;337
8.16.4;3. Metal-insulator-semiconductor diode fabrication and measurements;338
8.16.5;4. Discussion;338
8.16.6;5. Conclusion;339
8.16.7;Acknowledgment;339
8.16.8;References;339
8.17;Chapter 63. Noise studies of HFETs on low temperature grown GaAs buffers and of MESFETs with low temperature grown GaAs passivation;341
8.17.1;Abstract;341
8.17.2;1. Introduction;341
8.17.3;2. Low-frequency noise in HFETs;341
8.17.4;3. Phase noise in MESFETs;342
8.17.5;4. Channel noise;343
8.17.6;5. Conclusion;344
8.17.7;References;344
8.18;Chapter 64. Electrical conduction in low temperature grown InP;345
8.18.1;Abstract;345
8.18.2;1. Introduction;345
8.18.3;2. Material;345
8.18.4;3. Results;346
8.18.5;4. Discussion;346
8.18.6;5. Conclusions;346
8.18.7;References;347
8.19;Chapter 65. Low temperature molecular beam epitaxy of Al(Ga)InAs on InP and its application to high electron mobility transistor structures;348
8.19.1;Abstract;348
8.19.2;1. Introduction;348
8.19.3;2. Molecular beam epitaxy growth procedure;348
8.19.4;3. Electrical characteristics of LT-Al(Ga)InAs;348
8.19.5;4. Doping behaviour of LT-AllnAs: Si;349
8.19.6;5. Deep levels in LT-Al(Ga)InAs;349
8.19.7;6. Annealing behaviour of LT-Al(Ga)InAs;350
8.19.8;7. Application of LT-AlInAs to high electron mobility transistor structures;350
8.19.9;8. Summary;351
8.19.10;Acknowledgment;351
8.19.11;References;351
8.20;Chapter 66. Photo-induced current transient spectroscopy of Al0.48In0.52As semi-insulating layers grown on InP by molecular beam epitaxy;352
8.20.1;Abstract;352
8.20.2;1. Introduction;352
8.20.3;2. Experimental details;352
8.20.4;3. Results and discussion;353
8.20.5;4. Conclusion;355
8.20.6;Acknowledgments;355
8.20.7;References;355
8.21;Chapter 67. Low temperature chemical beam epitaxy of gallium phosphide/silicon heterostructures;356
8.21.1;Abstract;356
8.21.2;1. Introduction;356
8.21.3;2. Experimental conditions;356
8.21.4;3. Results;357
8.21.5;4. Discussion;359
8.21.6;5. Conclusion;360
8.21.7;Acknowledgments;360
8.21.8;References;360
8.21.9;Author Index of Volume 22, Number 1;362
8.21.10;Subject Index of Volume 22, Number 1;363



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.