Hong | Ai-Based Optimized Design of Structural Frames | Buch | 978-1-032-53681-1 | sack.de

Buch, Englisch, 606 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 1261 g

Hong

Ai-Based Optimized Design of Structural Frames

With Application to Practical Building Designs
1. Auflage 2024
ISBN: 978-1-032-53681-1
Verlag: CRC Press

With Application to Practical Building Designs

Buch, Englisch, 606 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 1261 g

ISBN: 978-1-032-53681-1
Verlag: CRC Press


This book introduces an auto-design-based optimization for building frames using an artificial neural network (ANN)-based Lagrange method and novel genetic algorithm (GA). The work of great mathematician Joseph-Louis Lagrange and ANNs are merged to identify parameters that optimize structural frames of reinforced concrete, prestressed concrete, and steel frames subject to one or more design constraints. New features for enhancing conventional GA are also demonstrated to optimize structural frames.

New features for optimizing multiple design targets of the building frames are highlighted, while design requirements imposed by codes are automatically satisfied. Chapters provide readers with an understanding of how both ANN-based and novel GA-based structural optimization can be implemented in holistically optimizing designated design targets for building structural frames, guiding readers toward more rational designs that is consistent with American Institute of Steel Construction (AISC) and American Concrete Institute (ACI) standards. ANN-based holistic designs of multi-story frames in general and reinforced concrete, prestressed concrete, and steel frames in particular, are introduced.

This book suits structural engineers, architects, and graduate students in the field of building frame designs and is heavily illustrated with color figures and tables.

Hong Ai-Based Optimized Design of Structural Frames jetzt bestellen!

Zielgruppe


Postgraduate and Professional


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction to optimizations of structural frames. 2. An auto-design for optimizing RC frames using the ANN-based Hong-Lagrange algorithm. 3. An auto-design for optimizing prestressed frames using the ANN-based Hong-Lagrange algorithm. 4. An auto-design for optimizing steel frames using the ANN-based Hong-Lagrange algorithm. 5. A new GA using mutations with dynamic ranges and a probability-based natural selection method to optimize precast beams. 6. AI-based optimizations of RC and PT frames (AI-FRT) using penalty-based genetic algorithm with probabilistic-based natural selections (PPD-GA) using dynamic mutations.


Won-Kee Hong is a professor of Architectural Engineering at Kyung Hee University, Republic of Korea. He has more than 35 years of professional experience in structural and construction engineering, having worked for Englekirk and Hart, USA; Nihon Sekkei, Japan; and Samsung Engineering and Construction, Korea. He has published more than 20 international papers in the field of AI-based structural designs including building frames. He is the author of several books including Hybrid Composite Precast Systems (Elsevier), Artificial Intelligence-Based Design of Reinforced Concrete Structures (Elsevier), Artificial Neural Network-based Optimized Design of Reinforced Concrete Structures (CRC Press, Taylor & Francis Group) and Artificial Neural Network-based Prestressed Concrete and Composite Structures (CRC Press, Taylor & Francis Group).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.