Hummel | Gromov’s Compactness Theorem for Pseudo-holomorphic Curves | E-Book | sack.de
E-Book

E-Book, Englisch, Band 151, 135 Seiten, eBook

Reihe: Progress in Mathematics

Hummel Gromov’s Compactness Theorem for Pseudo-holomorphic Curves


1997
ISBN: 978-3-0348-8952-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 151, 135 Seiten, eBook

Reihe: Progress in Mathematics

ISBN: 978-3-0348-8952-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Mikhail Gromov introduced pseudo-holomorphic curves into symplectic geometry in 1985. Since then, pseudo-holomorphic curves have taken on great importance in many fields. The aim of this book is to present the original proof of Gromov's compactness theorem for pseudo-holomorphic curves in detail. Local properties of pseudo-holomorphic curves are investigated and proved from a geometric viewpoint. Properties of particular interest are isoperimetric inequalities, a monotonicity formula, gradient bounds and the removal of singularities. A special chapter is devoted to relevant features of hyperbolic surfaces, where pairs of pants decomposition and thickthin decomposition are described. The book is essentially self-contained and should also be accessible to students with a basic knowledge of differentiable manifolds and covering spaces.
Hummel Gromov’s Compactness Theorem for Pseudo-holomorphic Curves jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


I Preliminaries.- 1. Riemannian manifolds.- 2. Almost complex and symplectic manifolds.- 3. J-holomorphic maps.- 4. Riemann surfaces and hyperbolic geometry.- 5. Annuli.- II Estimates for area and first derivatives.- 1. Gromov’s Schwarz- and monotonicity lemma.- 2. Area of J-holomorphic maps.- 3. Isoperimetric inequalities for J-holomorphic maps.- 4. Proof of the Gromov-Schwarz lemma.- III Higher order derivatives.- 1. 1-jets of J-holomorphic maps.- 2. Removal of singularities.- 3. Converging sequences of J-holomorphic maps.- 4. Variable almost complex structures.- IV Hyperbolic surfaces.- 1. Hexagons.- 2. Building hyperbolic surfaces from pairs of pants.- 3. Pairs of pants decomposition.- 4. Thick-thin decomposition.- 5. Compactness properties of hyperbolic structures.- V The compactness theorem.- 1. Cusp curves.- 2. Proof of the compactness theorem.- 3. Bubbles.- VI The squeezing theorem.- 1. Discussion of the statement.- 2. Proof modulo existence result for pseudo-holomorphic curves.- 3. The analytical setup: A rough outline.- 4. The required existence result.- Appendix A The classical isoperimetric inequality.- References on pseudo-holomorphic curves.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.