Buch, Englisch, 700 Seiten, Format (B × H): 163 mm x 241 mm, Gewicht: 1497 g
Buch, Englisch, 700 Seiten, Format (B × H): 163 mm x 241 mm, Gewicht: 1497 g
ISBN: 978-0-470-22478-6
Verlag: Wiley
Materials Science is predicated on the understanding of why materials behave in the way that they do. This set, consisting of Surfaces, Interfaces, and Films for Microelectronics and Electronic Materials Science by Eugene Irene introduces the reader to the field of materials science, providing extensive coverage of surfaces, interfaces and film fundamentals for microelectronics, as well as the physics and chemistry of microelectronics processing. Such information is designed to provide a basis for the understanding of existing microelectronic applications as well as to inform the design of new ones. Written by an expert with more than 25 years teaching experience in this field, this readily accessible set is appropriate as a primary text for undergraduate and graduate students and will also serve as a valuable resource to professionals who require self-study.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
ELECTRONIC MATERIAL SCIENCE TOC:
Preface.
1 Introduction to Electronic Materials Science.
1.1 Introduction.
1.2 Structure and Diffraction.
1.3 Defects.
1.4 Diffusion.
1.5 Phase Equilibria.
1.6 Mechanical Properties.
1.7 Electronic Structure.
1.8 Electronic Properties and Devices.
1.9 Electronic Materials Science.
2 Structure of Solids.
2.1 Introduction.
2.2 Order.
2.3 The Lattice.
2.4 Crystal Structure.
2.5 Notation.
2.6 Lattice Geometry.
2.7 The Wigner-Seitz Cell.
2.8 Crystal Structures.
Related Reading.
Exercises.
3 Diffraction.
3.1 Introduction.
3.2 Phase Difference and Bragg’s Law.
3.3 The Scattering Problem.
3.4 Reciprocal Space, RESP.
3.5 Diffraction Techniques.
3.6 Wave Vector Representation.
Related Reading.
Exercises.
4 Defects in Solids.
4.1 Introduction.
4.2 Why Do Defects Form?
4.3 Point Defects.
4.4 The Statistics of Point Defects.
4.5 Line Defects—Dislocations.
4.6 Planar Defects.
4.7 Three-Dimensional Defects.
Related Reading.
Exercises.
5 Diffusion in Solids.
5.1 Introduction to Diffusion Equations.
5.2 Atomistic Theory of Diffusion: Fick’s Laws and a Theory for the Diffusion Construct D.
5.3 Random Walk Problem.
5.4 Other Mass Transport Mechanisms.
5.5 Mathematics of Diffusion.
Related Reading.
Exercises.
6 Phase Equilibria.
6.1 Introduction.
6.2 The Gibbs Phase Rule.
6.3 Nucleation and Growth of Phases.
Related Reading.
Exercises.
7 Mechanical Properties of Solids—Elasticity.
7.1 Introduction.
7.2 Elasticity Relationships.
7.3 An Analysis of Stress by the Equation of Motion.
7.4 Hooke’s Law for Pure Dilatation and Pure Shear.
7.5 Poisson’s Ratio.
7.6 Relationships Among E, e, and v.
7.7 Relationships Among E, G, and n.
7.8 Resolving the Normal Forces.
Related Reading.
Exercises.
8 Mechanical Properties of Solids—Plasticity.
8.1 Introduction.
8.2 Plasticity Observations.
8.3 Role of Dislocations.
8.4 Deformation of Noncrystalline Materials.
Related Reading.
Exercises.
9 Electronic Structure of Solids.
9.1 Introduction.
9.2 Waves, Electrons, and the Wave Function.
9.3 Quantum Mechanics.
9.4 Electron Energy Band Representations.
9.5 Real Energy Band Structures.
9.6 Other Aspects of Electron Energy Band Structure.
Related Reading.
Exercises.
10 Electronic Properties of Materials.
10.1 Introduction.
10.2 Occupation of Electronic States.
10.3 Position of the Fermi Energy.
10.4 Electronic Properties of Metals: Conduction and Superconductivity.
10.5 Semiconductors.
10.6 Electrical Behavior of Organic Materials.
Related Reading.
Exercises.
11 Junctions and Devices and the Nanoscale.
11.1 Introduction.
11.2 Junctions.
11.3 Selected Devices.
11.4 Nanostructures and Nanodevices.
Index.
SURFACES, INTERFACES, and THIN FILMS FOR MICROELECTRONICS TOC:
Preface.
Part I: Fundamentals of Surfaces and Interfaces.
1. Introduction to Surfaces.
2. Structure of Surfaces.
3. Thermodynamics of Surfaces and Interfaces.
4. Surface Roughness.
5. Surface electronic States.
6. Other Surface Probes.
7. Charged Surfaces.
8.Adsorption.
9. Elliposometry and Optical Properties of Surfaces, Interfaces, and Films.
Part II: Microelectronics Applications.
10. Films and Interfaces.
11. Electronic Passivation of Semiconductor-Dielectric Film Interfaces.
12. The Si-SiO2 Interface and Other MOSFET Interfaces.
Index.