E-Book, Englisch, 548 Seiten
Ishikawa / Buyanova Novel Compound Semiconductor Nanowires
1. Auflage 2017
ISBN: 978-981-4745-77-2
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Materials, Devices, and Applications
E-Book, Englisch, 548 Seiten
ISBN: 978-981-4745-77-2
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
One dimensional electronic materials are expected to be key components owing to their potential applications in nanoscale electronics, optics, energy storage, and biology. Besides, compound semiconductors have been greatly developed as epitaxial growth crystal materials. Molecular beam and metalorganic vapor phase epitaxy approaches are representative techniques achieving 0D–2D quantum well, wire, and dot semiconductor III-V heterostructures with precise structural accuracy with atomic resolution. Based on the background of those epitaxial techniques, high-quality, single-crystalline III-V heterostructures have been achieved. III-V Nanowires have been proposed for the next generation of nanoscale optical and electrical devices such as nanowire light emitting diodes, lasers, photovoltaics, and transistors. Key issues for the realization of those devices involve the superior mobility and optical properties of III-V materials (i.e., nitride-, phosphide-, and arsenide-related heterostructure systems). Further, the developed epitaxial growth technique enables electronic carrier control through the formation of quantum structures and precise doping, which can be introduced into the nanowire system. The growth can extend the functions of the material systems through the introduction of elements with large miscibility gap, or, alternatively, by the formation of hybrid heterostructures between semiconductors and another material systems. This book reviews recent progresses of such novel III-V semiconductor nanowires, covering a wide range of aspects from the epitaxial growth to the device applications. Prospects of such advanced 1D structures for nanoscience and nanotechnology are also discussed.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Epitaxial Heterostructure Nanowires
Nari Jeon and Lincoln J. Lauhon
Molecular beam epitaxial growth of GaN nanocolumns and related nanocolumn emitters
Katsumi Kishino and Hiroto Sekiguchi
Novel GaNP nanowires for advanced optoelectronics and photonics
I. A. Buyanova, C. W. Tu, and W. M. Chen
GaNAs-based nanowires for near-infrared optoelectronics
I. A. Buyanova, F. Ishikawa, and W. M. Chen
Dilute Bismide Nanowires
Wojciech. M. Linhart, Szymon. J. Zelewski, Fumitaro Ishikawa, Satoshi Shimomura, and Robert Kudrawiec
Ferromagnetic MnAs/III-V Hybrid Nanowires for Spintronics
Shinjiro Hara
GaAs-Fe3Si Semiconductor-Ferromagnet Core-Shell Nanowires for Spintronics
Maria Hilse, Bernd Jenichen, and Jens Herfort
GaAs/AlGaOx Heterostructured Nanowires Synthesized by Post Growth Wet Oxidation
Fumitaro Ishikawa and Naoki Yamamoto
GaAs/SrTiO3 Core-Shell Nanowires
Xin Guan and José Penuelas
Ga(In)N nanowires grown by Molecular Beam Epitaxy: from quantum light emitters to nano-transistors
Zarko Gacevic and Enrique Calleja
InP-related nanowires for light-emitting applications
Kenichi Kawaguchi
InP/InAs quantum heterostructure nanowires
Guoqiang Zhang, Kouta Tateno, and Hideki Gotoh
III-Nitride Nanowires and Their Laser, LED photovoltaic Applications
Wei Guo, Pallab Bhattacharya, and Junseok Heo
III-V nanowires: transistor and photovoltaic applications
Katsuhiro Tomioka, Junichi Motohisa, and Takashi Fukui