Joule / Krause / Oestreich | Science of Synthesis Knowledge Updates 2017 Vol.1 | E-Book | sack.de
E-Book

E-Book, Englisch, 528 Seiten, PDF

Reihe: Science of Synthesis

Joule / Krause / Oestreich Science of Synthesis Knowledge Updates 2017 Vol.1


1. Auflage 2017
ISBN: 978-3-13-241411-2
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 528 Seiten, PDF

Reihe: Science of Synthesis

ISBN: 978-3-13-241411-2
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The Science of Synthesis Editorial Board, together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.Hot-spot updates across all categories ensure access to state-of-the-art synthetic methodology5% annuals update-rate3 Update volumes
Joule / Krause / Oestreich Science of Synthesis Knowledge Updates 2017 Vol.1 jetzt bestellen!

Zielgruppe


Wissenschaftler

Weitere Infos & Material


1;Thieme: Science of Synthesis Knowledge Updates 2017/1;1
2;Title Page;6
3;Copyright;8
4;Preface;9
5;Abstracts;11
6;Science of Synthesis Knowledge Updates 2017/1;21
7;Table of Contents;23
8;3.6.16 Gold-Catalyzed Cycloaddition Reactions;37
8.1;3.6.16.1 Cycloadditions via Gold-Containing 1,n-Dipolar Intermediates;37
8.1.1;3.6.16.1.1 Method 1: Gold-Containing Benzopyrylium Intermediates;38
8.1.1.1;3.6.16.1.1.1 Variation 1: Gold-Containing Benzopyrylium Azomethine Ylides;44
8.1.1.2;3.6.16.1.1.2 Variation 2: Gold-Containing 2-Oxoalkyl Oxonium Species;47
8.1.2;3.6.16.1.2 Method 2: Furyl–Gold 1,n-Dipole Intermediates;48
8.1.2.1;3.6.16.1.2.1 Variation 1: Furyl–Gold 1,3-Dipole Intermediates;48
8.1.2.2;3.6.16.1.2.2 Variation 2: Furyl–Gold 1,4-Dipole Intermediates;51
8.1.2.3;3.6.16.1.2.3 Variation 3: Furan-Based ortho-Quinodimethane Intermediates;54
8.1.3;3.6.16.1.3 Method 3: Gold-Containing All-Carbon 1,3-Dipoles;55
8.2;3.6.16.2 Cycloadditions via Gold-Coordinated Allene Intermediates;57
8.2.1;3.6.16.2.1 Method 1: Cycloadditions Initiated by Gold Activation of Allenes;57
8.2.2;3.6.16.2.2 Method 2: Cycloadditions Initiated by Gold Activation of Propargylic Carboxylates;69
8.3;3.6.16.3 Cycloadditions via trans-Alkenylgold Intermediates;71
8.3.1;3.6.16.3.1 Method 1: trans-Alkenylgold Intermediates Generated by Alkyne Activation;71
8.3.1.1;3.6.16.3.1.1 Variation 1: Alkynes as Latent Alkenes in Gold-Catalyzed Cycloadditions;74
8.4;3.6.16.4 Cycloadditions via Gold Carbene Intermediates;76
8.4.1;3.6.16.4.1 Method 1: Gold Carbenes Generated by Cycloisomerization of Alkynes and Alkenes;76
8.4.2;3.6.16.4.2 Method 2: Gold Carbenes Generated by 1,2-Acyloxy Migration of Propargyl Carboxylates;81
8.4.3;3.6.16.4.3 Method 3: Gold Carbenes Generated by Alkyne Oxidation;84
8.4.3.1;3.6.16.4.3.1 Variation 1: Gold-Catalyzed Cycloaddition Reactions by Nitrene Transfer;87
8.4.3.2;3.6.16.4.3.2 Variation 2: Gold-Catalyzed Cycloaddition Reactions by Carbene Transfer;88
8.4.4;3.6.16.4.4 Method 4: Gold Carbenes Generated by Diazo Decomposition;89
8.5;3.6.16.5 Cycloadditions via Gold-Coordinated Heteroatom Intermediates;91
9;4.4.7 Product Subclass 7: Silylboron Reagents;101
9.1;4.4.7.1 Synthesis of Product Subclass 7;104
9.1.1;4.4.7.1.1 Preparation by Si—B Bond Formation;104
9.1.1.1;4.4.7.1.1.1 Method 1: Nucleophilic Substitution at Boron with Silyllithium Reagents;104
9.1.1.1.1;4.4.7.1.1.1.1 Variation 1: Substitution of Amino-Substituted Chloroboranes;104
9.1.1.1.2;4.4.7.1.1.1.2 Variation 2: Substitution of a Diaryl-Substituted Fluoroborane;105
9.1.1.1.3;4.4.7.1.1.1.3 Variation 3: Nucleophilic Substitution of Diol-Substituted Hydro- or Alkoxyboranes;106
9.1.1.2;4.4.7.1.1.2 Method 2: Iridium-Catalyzed Borylation of Trialkylsilanes;107
9.1.1.3;4.4.7.1.1.3 Method 3: Reductive Coupling of Chlorosilanes and Chloroboranes;108
9.1.2;4.4.7.1.2 Modification of Si—B Substitution Pattern;109
9.1.2.1;4.4.7.1.2.1 Method 1: Ligand Exchange at the Boron Atom;109
9.1.2.2;4.4.7.1.2.2 Method 2: Manipulation at the Silicon Atom;111
9.2;4.4.7.2 Applications of Product Subclass 7 in Organic Synthesis;113
9.2.1;4.4.7.2.1 Method 1: Reactions with Alkynes;113
9.2.1.1;4.4.7.2.1.1 Variation 1: Transition-Metal-Catalyzed Silaboration;113
9.2.1.2;4.4.7.2.1.2 Variation 2: Palladium-Catalyzed Silaborative Cyclization;119
9.2.1.3;4.4.7.2.1.3 Variation 3: Nickel-Catalyzed Silaborative Dimerization;120
9.2.1.4;4.4.7.2.1.4 Variation 4: Palladium-Catalyzed (2 + 2 + 1) Cycloaddition with Silylenes;121
9.2.1.5;4.4.7.2.1.5 Variation 5: Copper-Catalyzed Silylation;122
9.2.2;4.4.7.2.2 Method 2: Reactions with Alkenes;127
9.2.2.1;4.4.7.2.2.1 Variation 1: Platinum-Catalyzed Silaboration;127
9.2.2.2;4.4.7.2.2.2 Variation 2: Base-Catalyzed Silaboration;131
9.2.2.3;4.4.7.2.2.3 Variation 3: Photochemical Radical Silylation;132
9.2.3;4.4.7.2.3 Method 3: Reactions with Conjugated Dienes and Enynes;133
9.2.3.1;4.4.7.2.3.1 Variation 1: Transition-Metal-Catalyzed 1,4-Silaboration;133
9.2.3.2;4.4.7.2.3.2 Variation 2: Platinum-Catalyzed Silaborative Coupling of 1,3-Dienes and Aldehydes;136
9.2.3.3;4.4.7.2.3.3 Variation 3: Nickel-Catalyzed Silylative Coupling of 1,3-Dienes and Aldehydes;137
9.2.3.4;4.4.7.2.3.4 Variation 4: Palladium-Catalyzed (4 + 1) Cycloaddition with Silylenes;138
9.2.4;4.4.7.2.4 Method 4: Reactions with Allenes;140
9.2.4.1;4.4.7.2.4.1 Variation 1: Palladium-Catalyzed Silaboration;140
9.2.4.2;4.4.7.2.4.2 Variation 2: Copper-Catalyzed Silylation;145
9.2.5;4.4.7.2.5 Method 5: Reactions with C=X Bonds;151
9.2.5.1;4.4.7.2.5.1 Variation 1: 1,2-Silylation of Aldehydes;151
9.2.5.2;4.4.7.2.5.2 Variation 2: 1,2-Silylation of Imines;153
9.2.5.3;4.4.7.2.5.3 Variation 3: Reaction with Anhydrides;157
9.2.6;4.4.7.2.6 Method 6: Reactions with ?,?-Unsaturated Carbonyl and Carboxy Compounds and Derivatives Thereof;158
9.2.6.1;4.4.7.2.6.1 Variation 1: Transition-Metal-Catalyzed 1,4-Silylation of Enones and ?,?- Unsaturated Esters;158
9.2.6.2;4.4.7.2.6.2 Variation 2: N-Heterocyclic Carbene Catalyzed 1,4-Silylation of Enones, Enals, or Unsaturated Esters;171
9.2.6.3;4.4.7.2.6.3 Variation 3: Copper-Catalyzed 1,4-Silylation of Ynones and Derivatives Thereof;173
9.2.6.4;4.4.7.2.6.4 Variation 4: Metal-Free Phosphine-Catalyzed Silaboration of Ynoates;178
9.2.7;4.4.7.2.7 Method 7: Reactions with Allylic and Propargylic Electrophiles;179
9.2.7.1;4.4.7.2.7.1 Variation 1: Copper-Catalyzed Allylic Substitution;179
9.2.7.2;4.4.7.2.7.2 Variation 2: Silylative Cyclopropanation;184
9.2.7.3;4.4.7.2.7.3 Variation 3: Transition-Metal-Catalyzed Propargylic Substitution;185
9.2.8;4.4.7.2.8 Method 8: Reactions with (Het)arenes;187
9.2.8.1;4.4.7.2.8.1 Variation 1: Silaborative Dearomatization of Nitrogen Heterocycles;187
9.2.8.2;4.4.7.2.8.2 Variation 2: Nickel/Copper-Catalyzed Silylation;189
9.2.8.3;4.4.7.2.8.3 Variation 3: Base-Catalyzed Borylation;191
9.2.8.4;4.4.7.2.8.4 Variation 4: Iridium-Catalyzed Borylation;194
9.2.9;4.4.7.2.9 Method 9: Reactions with Strained Ring Compounds;195
9.2.9.1;4.4.7.2.9.1 Variation 1: Silaboration of Methylenecyclopropanes;195
9.2.9.2;4.4.7.2.9.2 Variation 2: Silaboration of Vinylcyclopropanes, Vinylcyclobutanes, and Related Compounds;199
9.2.10;4.4.7.2.10 Method 10: Reactions with Carbenoids and Related Compounds;201
9.2.10.1;4.4.7.2.10.1 Variation 1: Insertion of Alkylidene-Type Carbenoids into the Si—B Bond;201
9.2.10.2;4.4.7.2.10.2 Variation 2: Insertion of sp3-Carbon-Centered Carbenoids into the Si—B Bond;204
9.2.10.3;4.4.7.2.10.3 Variation 3: Insertion of Isocyanides into the Si—B Bond;206
9.2.11;4.4.7.2.11 Method 11: Miscellaneous Reactions;208
9.2.11.1;4.4.7.2.11.1 Variation 1: Stereoselective Deoxygenation of trans-Stilbene Oxides;208
9.2.11.2;4.4.7.2.11.2 Variation 2: B—N Bond Formation by Desilacoupling Catalyzed by a Strontium Bisamide Base;209
10;4.4.11 Product Subclass 11: Silyllithium and Related Silyl Alkali Metal Reagents;213
10.1;4.4.11.1 Method 1: Reductive Cleavage of Disilanes with Alkali Metals;214
10.2;4.4.11.2 Method 2: Reduction of Halotriorganosilanes with Alkali Metals;215
10.3;4.4.11.3 Method 3: Nucleophilic Cleavage of Si-M Bonds (M = Si, Sn, etc.);216
10.3.1;4.4.11.3.1 Variation 1: Si—Si Bond Cleavage;217
10.3.2;4.4.11.3.2 Variation 2: Si—Sn Bond Cleavage;219
10.4;4.4.11.4 Method 4: Si—H Bond Cleavage;219
10.4.1;4.4.11.4.1 Variation 1: Si—H Bond Cleavage by Alkali Metals;219
10.4.2;4.4.11.4.2 Variation 2: Si—H Bond Cleavage by Alkali Metal Hydrides;221
10.5;4.4.11.5 Method 5: Preparation via Disilylmercury Compounds;222
11;4.4.19.4 Silyl Sulfides and Selenides (Update 2017);225
11.1;4.4.19.4.1 Synthesis of Silyl Sulfides and Selenides;225
11.1.1;4.4.19.4.1.1 Method 1: Synthesis by Reaction of Alkali Metals, Chalcogens, and Halosilanes or Alkali Metal Chalcogenides and Halosilanes;225
11.1.1.1;4.4.19.4.1.1.1 Variation 1: From Lithium, Sulfur, and Halosilanes;225
11.1.1.2;4.4.19.4.1.1.2 Variation 2: From Sodium, Sulfur, and Halosilanes;226
11.1.1.3;4.4.19.4.1.1.3 Variation 3: From Lithium Sulfide and Halosilanes;227
11.1.1.4;4.4.19.4.1.1.4 Variation 4: From Lithium Selenide and Halosilanes;228
11.1.1.5;4.4.19.4.1.1.5 Variation 5: From Lithium Chalcogenides, Generated from Lithium Triethylborohydride and Chalcogens, and Halosilanes;229
11.1.2;4.4.19.4.1.2 Method 2: Synthesis from Diselenides and Halosilanes;229
11.1.2.1;4.4.19.4.1.2.1 Variation 1: From Dimethyl Diselenide, Lithium Aluminum Hydride, and Halosilanes;229
11.1.2.2;4.4.19.4.1.2.2 Variation 2: From Diphenyl Diselenide, Sodium, and Halosilanes;230
11.1.2.3;4.4.19.4.1.2.3 Variation 3: From Diphenyl Diselenide, Lithium in Liquid Ammonia, and Halosilanes;230
11.1.3;4.4.19.4.1.3 Method 3: Synthesis from Selanols;231
11.1.4;4.4.19.4.1.4 Method 4: Synthesis from Alkynes, Butyllithium, Sulfur, and Halosilanes;232
11.1.5;4.4.19.4.1.5 Method 5: Synthesis Using Phosphorus-Based Reagents;233
11.1.5.1;4.4.19.4.1.5.1 Variation 1: From Silylphosphines and Sulfur;233
11.1.5.2;4.4.19.4.1.5.2 Variation 2: From Phosphine Sulfides and (Dimethylamino)trimethylsilane;233
11.1.5.3;4.4.19.4.1.5.3 Variation 3: From Phosphorus Pentasulfide and Alkoxytrimethylsilanes or (Alkylsulfanyl)trimethylsilanes;234
11.1.6;4.4.19.4.1.6 Method 6: Synthesis from Grignard Reagents, Selenium, and Halosilanes;234
11.1.7;4.4.19.4.1.7 Method 7: Synthesis from Existing Silyl Selenides by Substitution of a Group on Selenium;235
11.2;4.4.19.4.2 Applications of Silyl Sulfides and Selenides;235
12;4.4.24.3 Silyl Cyanides (Update 2017);239
12.1;4.4.24.3.1 Tetracoordinate Silyl Cyanides;239
12.1.1;4.4.24.3.1.1 Method 1: Transmetalation of Silyl Chlorides;239
12.1.2;4.4.24.3.1.2 Method 2: Metathesis between Si—H and X—CN Bonds (X=C, N, O, Si);240
12.1.3;4.4.24.3.1.3 Method 3: Insertion of Silylenes into Isocyanides;241
12.1.4;4.4.24.3.1.4 Method 4: Transformation of Si=C=N-Si Units;242
12.2;4.4.24.3.2 Extracoordinate Silyl Cyanides;244
12.2.1;4.4.24.3.2.1 Method 1: Reaction of Pentacoordinate Silyl Chlorides with Cyanotrimethylsilane;244
12.2.2;4.4.24.3.2.2 Method 2: Reaction of Hexacoordinate Silyl Chlorides with Cyanotrimethylsilane;246
13;4.4.47 Product Subclass 47: Silanols;249
13.1;4.4.47.1 Synthesis of Silanols;249
13.1.1;4.4.47.1.1 Method 1: Hydrolysis of Chlorosilanes;249
13.1.1.1;4.4.47.1.1.1 Variation 1: Biphasic Hydrolysis of Chlorosilanes;250
13.1.1.2;4.4.47.1.1.2 Variation 2: Biphasic Hydrolysis of Chlorosilanes with Triethylamine;250
13.1.1.3;4.4.47.1.1.3 Variation 3: Synthesis of Bulky Silanediols from Chlorosilanes;251
13.1.2;4.4.47.1.2 Method 2: Stoichiometric Oxidation of Silanes;252
13.1.2.1;4.4.47.1.2.1 Variation 1: Oxidation of Silanes with Ozone;252
13.1.2.2;4.4.47.1.2.2 Variation 2: Oxidation of Silanes with Peroxy Acids;253
13.1.2.3;4.4.47.1.2.3 Variation 3: Oxidation of Silanes with Dioxiranes or Oxaziridines;254
13.1.2.4;4.4.47.1.2.4 Variation 4: Oxidation of Silanes with Potassium Permanganate and Sonication;255
13.1.2.5;4.4.47.1.2.5 Variation 5: Oxidation of Silanes with Osmium(VIII) Oxide;255
13.1.3;4.4.47.1.3 Method 3: Catalytic Oxidation of Silanes;256
13.1.3.1;4.4.47.1.3.1 Variation 1: Heterogeneous Catalytic Oxidation of Silanes with Water;257
13.1.3.2;4.4.47.1.3.2 Variation 2: Catalytic Oxidation of Silanes with Nanoparticles;257
13.1.3.3;4.4.47.1.3.3 Variation 3: Homogeneous Catalytic Oxidation of Silanes with Water;259
13.1.3.4;4.4.47.1.3.4 Variation 4: Catalytic Oxidation of Silanes with Peroxides or Oxygen;264
13.1.3.5;4.4.47.1.3.5 Variation 5: Organocatalytic Oxidation of Silanes;266
13.1.4;4.4.47.1.4 Method 4: Hydrolysis of Aromatic C(sp2)—Si Bonds;266
13.1.5;4.4.47.1.5 Method 5: Cleavage of Siloxy- and Alkoxysilanes;269
13.2;4.4.47.2 Catalytic Activity of Silanols;271
13.2.1;4.4.47.2.1 Method 1: Hydrogen-Bond-Donor Catalysis Involving Silanediols;271
13.2.2;4.4.47.2.2 Method 2: Silanediols in Anion-Binding Catalysis;273
13.2.3;4.4.47.2.3 Method 3: Catalytic Activity of Bissilanols;275
13.2.4;4.4.47.2.4 Method 4: Catalytic Activity of Monosilanols;275
13.3;4.4.47.3 Silanols as Directing Groups;277
14;10.22.2 Product Subclass 2: Azaindol-1-ols;283
14.1;10.22.2.1 Synthesis by Ring-Closure Reactions;283
14.1.1;10.22.2.1.1 By Annulation to a Pyridine;283
14.1.1.1;10.22.2.1.1.1 With Formation of One N—C Bond;283
14.1.1.1.1;10.22.2.1.1.1.1 With Formation of the 1—2 Bond;283
14.1.1.1.1.1;10.22.2.1.1.1.1.1 Method 1: From 2-(o-Nitropyridyl)acetates;283
14.1.1.1.1.2;10.22.2.1.1.1.1.2 Method 2: From an (Alkenylpyridyl)hydroxylamine;285
14.1.1.1.1.3;10.22.2.1.1.1.1.3 Method 3: From a 2-(3-Nitropyridin-2-yl)ethanone;286
14.1.1.1.1.4;10.22.2.1.1.1.1.4 Method 4: From 2-(3-Nitropyridin-2-yl)pent-4-enenitrile;286
14.1.1.1.2;10.22.2.1.1.1.2 With Formation of the 1—7a Bond;287
14.1.1.1.2.1;10.22.2.1.1.1.2.1 Method 1: From 1-(3-Pyridyl)-2-nitropropene and an Isocyanide;287
14.2;10.22.2.2 Synthesis by Substituent Modification;288
14.2.1;10.22.2.2.1 Substitution of Existing Substituents;288
14.2.1.1;10.22.2.2.1.1 Pyrrole Ring Substituents;288
14.2.1.1.1;10.22.2.2.1.1.1 Method 1: Modification of C-Nitrogen at C2;288
14.2.1.1.2;10.22.2.2.1.1.2 Method 2: Modification of N-Oxygen at N1;289
15;10.22.3 Product Subclass 3: 1,3-Dihydroazaindol-2-ones;293
15.1;10.22.3.1 Synthesis by Ring-Closure Reactions;293
15.1.1;10.22.3.1.1 By Annulation to a Pyridine;293
15.1.1.1;10.22.3.1.1.1 By Formation of Two N—C Bonds;293
15.1.1.1.1;10.22.3.1.1.1.1 With Formation of the 1—7a and 1—2 Bonds;293
15.1.1.1.1.1;10.22.3.1.1.1.1.1 Method 1: From 2-(2-Chloropyridin-3-yl)acetic Acid;293
15.1.1.2;10.22.3.1.1.2 By Formation of One N—C Bond and One C—C Bond;294
15.1.1.2.1;10.22.3.1.1.2.1 With Formation of the 1—2 and 2—3 Bonds;294
15.1.1.2.1.1;10.22.3.1.1.2.1.1 Method 1: From Lithiated ortho-Methylpyridinamines;294
15.1.1.2.2;10.22.3.1.1.2.2 With Formation of the 1—2 and 3—3a Bonds;295
15.1.1.2.2.1;10.22.3.1.1.2.2.1 Method 1: From a 2-Pyridylhydrazide;295
15.1.1.3;10.22.3.1.1.3 By Formation of Two C—C Bonds;296
15.1.1.3.1;10.22.3.1.1.3.1 With Formation of 2—3 and 3—3a Bonds;296
15.1.1.3.1.1;10.22.3.1.1.3.1.1 Method 1: From N-Pivaloylpyridinamines;296
15.1.1.4;10.22.3.1.1.4 By Formation of One N—C Bond;297
15.1.1.4.1;10.22.3.1.1.4.1 With Formation of the 1—7a Bond;297
15.1.1.4.1.1;10.22.3.1.1.4.1.1 Method 1: From 2-(2-Chloropyridin-3-yl)acetamide;297
15.1.1.4.1.2;10.22.3.1.1.4.1.2 Method 2: From 2-(2-Bromopyridin-3-yl)acetonitrile;298
15.1.1.4.1.3;10.22.3.1.1.4.1.3 Method 3: From 2-Hydroxy-N-morpholino-2-(3-pyridyl)acetamide;298
15.1.1.4.2;10.22.3.1.1.4.2 With Formation of the 1—2 Bond;300
15.1.1.4.2.1;10.22.3.1.1.4.2.1 Method 1: From a 2-(Nitropyridyl)malonate;300
15.1.1.4.2.2;10.22.3.1.1.4.2.2 Method 2: From a 2-Cyano-2-(3-nitropyridyl)acetate;303
15.1.1.4.2.3;10.22.3.1.1.4.2.3 Method 3: From (3-Nitropyridyl)acetonitriles;307
15.1.1.4.2.4;10.22.3.1.1.4.2.4 Method 4: From (3-Nitropyridyl)acetates;308
15.1.1.4.2.5;10.22.3.1.1.4.2.5 Method 5: From (2-Aminopyridin-3-yl)acetic Acid;311
15.1.1.5;10.22.3.1.1.5 By Formation of One C—C Bond;312
15.1.1.5.1;10.22.3.1.1.5.1 With Formation of the 3—3a Bond;312
15.1.1.5.1.1;10.22.3.1.1.5.1.1 Method 1: From N-(3-Bromopyridin-2-yl)alk-2-enamides;312
15.1.1.5.1.2;10.22.3.1.1.5.1.2 Method 2: From N-Pyridylpropanamides;312
15.1.1.5.1.3;10.22.3.1.1.5.1.3 Method 3: From N-(Halopyridyl) Amides;314
15.1.1.5.1.4;10.22.3.1.1.5.1.4 Method 4: From N-(2-Chloropyridin-3-yl)acetamides;316
15.1.1.5.1.5;10.22.3.1.1.5.1.5 Method 5: From a 2-Bromo-N-pyridylacetamide;316
15.1.1.5.1.6;10.22.3.1.1.5.1.6 Method 6: From a Pyridylcarbamoylmethyl Xanthate;317
15.1.1.5.1.7;10.22.3.1.1.5.1.7 Method 7: From Diethyl {2-[(2-Bromopyridin-3-yl)amino]- 2-oxoethyl}phosphonate and an Aldehyde;320
15.2;10.22.3.2 Synthesis by Ring Transformation;321
15.2.1;10.22.3.2.1 From Other Heterocyclic Systems;321
15.2.1.1;10.22.3.2.1.1 Method 1: 1H-Pyrrolopyridines by 3,3-Dibromination;321
15.2.1.2;10.22.3.2.1.2 Method 2: From a 1H-Pyrrolo[2,3-b]pyridine by Enzymatic Oxidation;326
15.2.1.3;10.22.3.2.1.3 Method 3: From a 1H-Pyrrolopyridine-2,3-dione;326
15.3;10.22.3.3 Synthesis by Substituent Modification;330
15.3.1;10.22.3.3.1 Substitution of Existing Substituents;330
15.3.1.1;10.22.3.3.1.1 Pyridine Ring Substituents;330
15.3.1.1.1;10.22.3.3.1.1.1 Modification of C-Halogen at C5;330
15.3.1.1.1.1;10.22.3.3.1.1.1.1 Method 1: Formation of C-Carbon;330
15.3.1.1.2;10.22.3.3.1.1.2 Modification of Nitrogen at N4;333
15.3.1.1.2.1;10.22.3.3.1.1.2.1 Method 1: Formation of N-Carbon;333
15.3.1.2;10.22.3.3.1.2 Pyrrole Ring Substituents;334
15.3.1.2.1;10.22.3.3.1.2.1 Substitution of C-Hydrogen at C3;334
15.3.1.2.1.1;10.22.3.3.1.2.1.1 Method 1: Formation of C-Carbon (Alkylation);334
15.3.1.2.1.2;10.22.3.3.1.2.1.2 Method 2: Formation of C-Carbon (Alkenylation);339
16;10.22.4 Product Subclass 4: 1,2-Dihydroazaindol-3-ones;349
16.1;10.22.4.1 Synthesis by Ring-Closure Reactions;350
16.1.1;10.22.4.1.1 By Annulation to a Pyridine;350
16.1.1.1;10.22.4.1.1.1 By Formation of One N—C and One C—C Bond;350
16.1.1.1.1;10.22.4.1.1.1.1 With Formation of the 1—7a and 2—3 Bonds;350
16.1.1.1.1.1;10.22.4.1.1.1.1.1 Method 1: From a Pyridine Ester with an ortho-Amino Group;350
16.1.1.1.2;10.22.4.1.1.1.2 With Formation of the 3—3a and 1—2 Bonds;351
16.1.1.1.2.1;10.22.4.1.1.1.2.1 Method 1: From 3-Iodopyridin-2-amines and 1-Methoxyallene;351
16.1.1.2;10.22.4.1.1.2 By Formation of One N—C Bond;352
16.1.1.2.1;10.22.4.1.1.2.1 With Formation of the 1—7a Bond;352
16.1.1.2.1.1;10.22.4.1.1.2.1.1 Method 1: From (2-Chloropyridin-3-yl)(1H-pyrrol-2-yl)methanone;352
16.1.1.3;10.22.4.1.1.3 By Formation of One C—C Bond;352
16.1.1.3.1;10.22.4.1.1.3.1 With Formation of the 2—3 Bond;352
16.1.1.3.1.1;10.22.4.1.1.3.1.1 Method 1: From an N-Pyridylglycine;352
16.1.2;10.22.4.1.2 By Annulation to a Pyrrole;354
16.1.2.1;10.22.4.1.2.1 By Formation of Two C—C Bonds;354
16.1.2.1.1;10.22.4.1.2.1.1 With Formation of the 4—5 and 6—7 Bonds;354
16.1.2.1.1.1;10.22.4.1.2.1.1.1 Method 1: From a Masked 2-Amino-4-oxo-1H-pyrrole-3-carbaldehyde;354
16.2;10.22.4.2 Synthesis by Ring Transformation;355
16.2.1;10.22.4.2.1 From Other Heterocyclic Systems;355
16.2.1.1;10.22.4.2.1.1 Method 1: From a Tetrazolo[1,5-a]pyridine;355
16.2.1.2;10.22.4.2.1.2 Method 2: From a 1H-Pyrrolo[2,3-b]pyridine-3-carbaldehyde;355
16.3;10.22.4.3 Synthesis by Substituent Modification;356
16.3.1;10.22.4.3.1 Substitution of Existing Substituents;356
16.3.1.1;10.22.4.3.1.1 Pyrrole Ring Substituents;356
16.3.1.1.1;10.22.4.3.1.1.1 Modification of C-Oxygen at C3;356
16.3.1.1.1.1;10.22.4.3.1.1.1.1 Method 1: Formation of O-Carbon;356
16.3.1.1.2;10.22.4.3.1.1.2 Substitution of C-Hydrogen at C2;357
16.3.1.1.2.1;10.22.4.3.1.1.2.1 Method 1: Formation of C-Carbon;357
16.3.1.1.3;10.22.4.3.1.1.3 Modification of Nitrogen at N1;359
16.3.1.1.3.1;10.22.4.3.1.1.3.1 Method 1: Formation of N-Carbon;359
17;10.22.5 Product Subclass 5: 1H-Azaindole-2,3-diones;361
17.1;10.22.5.1 Synthesis by Ring-Closure Reactions;362
17.1.1;10.22.5.1.1 By Annulation to a Pyridine;362
17.1.1.1;10.22.5.1.1.1 By Formation of One N—C Bond;362
17.1.1.1.1;10.22.5.1.1.1.1 With Formation of the 1—2 Bond;362
17.1.1.1.1.1;10.22.5.1.1.1.1.1 Method 1: From {4-[(tert-Butoxycarbonyl)amino]pyridin-3-yl}glyoxylate;362
17.2;10.22.5.2 Synthesis by Ring Transformation;362
17.2.1;10.22.5.2.1 From Other Heterocyclic Systems;362
17.2.1.1;10.22.5.2.1.1 Method 1: From a 1,3-Dihydro-2H-pyrrolopyridin-2-one;362
17.2.1.2;10.22.5.2.1.2 Method 2: From a Pyrrolopyridine;365
17.3;10.22.5.3 Synthesis by Substituent Modification;371
17.3.1;10.22.5.3.1 Substitution of Existing Substituents;371
17.3.1.1;10.22.5.3.1.1 Pyridine Ring Substituents;371
17.3.1.1.1;10.22.5.3.1.1.1 Substitution of C-Hydrogen at C5;371
17.3.1.1.1.1;10.22.5.3.1.1.1.1 Method 1: Giving C-Halogen;371
17.3.1.2;10.22.5.3.1.2 Pyrrole Ring Substituents;372
17.3.1.2.1;10.22.5.3.1.2.1 Substitution of N-Hydrogen at N1;372
17.3.1.2.1.1;10.22.5.3.1.2.1.1 Method 1: Formation of N-Carbon;372
18;10.22.6 Product Subclass 6: Azaindol-2- and Azaindol-3-amines;375
18.1;10.22.6.1 Synthesis by Ring-Closure Reactions;375
18.1.1;10.22.6.1.1 By Annulation to a Pyridine;375
18.1.1.1;10.22.6.1.1.1 By Formation of One N—C and One C—C Bond;375
18.1.1.1.1;10.22.6.1.1.1.1 With Formation of the 1—2 and 3—3a Bonds;375
18.1.1.1.1.1;10.22.6.1.1.1.1.1 Method 1: From a 2-Halo-3-nitropyridine and a 2-Cyanoacetamide;375
18.1.1.1.2;10.22.6.1.1.1.2 With Formation of the 1—2 and 2—3 Bonds;376
18.1.1.1.2.1;10.22.6.1.1.1.2.1 Method 1: From Aminopyridine-3-carbonitriles;376
18.1.1.2;10.22.6.1.1.2 By Formation of One N—C Bond;377
18.1.1.2.1;10.22.6.1.1.2.1 With Formation of the 1—2 Bond;377
18.1.1.2.1.1;10.22.6.1.1.2.1.1 Method 1: From an Ethyl 2-Cyano-2-(3-nitropyridyl)acetate;377
18.1.1.2.1.2;10.22.6.1.1.2.1.2 Method 2: From a 2-[3-(Alkylamino)pyridin-2-yl]acetonitrile;378
18.1.1.2.1.3;10.22.6.1.1.2.1.3 Method 3: From 3-Ethynyl-N-methylpyridin-2-amine;379
18.1.1.3;10.22.6.1.1.3 By Formation of One C—C Bond;380
18.1.1.3.1;10.22.6.1.1.3.1 With Formation of the 2—3 Bond;380
18.1.1.3.1.1;10.22.6.1.1.3.1.1 Method 1: From Substituted 2-Aminopyridine-3-carbonitriles;380
18.2;10.22.6.2 Synthesis by Ring Transformation;381
18.2.1;10.22.6.2.1 From Other Heterocyclic Systems;381
18.2.1.1;10.22.6.2.1.1 Method 1: From a Pyrrolopyridine;381
18.2.1.1.1;10.22.6.2.1.1.1 Variation 1: From a Halopyrrolopyridine;381
18.2.1.1.2;10.22.6.2.1.1.2 Variation 2: Via Nitrosation;382
18.2.1.1.3;10.22.6.2.1.1.3 Variation 3: Via Diazonium Coupling;384
18.2.1.1.4;10.22.6.2.1.1.4 Variation 4: By Reduction of Nitro Groups;385
18.2.1.1.5;10.22.6.2.1.1.5 Variation 5: Via Azidation;388
18.2.1.2;10.22.6.2.1.2 Method 2: From a 1,2,3-Dithiazole;390
19;21.17 Synthesis of Amides (Including Peptides) in Continuous-Flow Reactors;393
19.1;21.17.1 Microreactors: A Faster Tool for Synthesis Laboratories;394
19.2;21.17.2 Amide Formation in Microflow Reactors: Exploring Different Possibilities;395
19.2.1;21.17.2.1 Peptide Synthesis;395
19.2.1.1;21.17.2.1.1 Method 1: Synthesis of Di- and Tripeptides in Solution;395
19.2.1.2;21.17.2.1.2 Method 2: Synthesis of Di- and Tripeptides Using Immobilized Reagents;398
19.2.1.3;21.17.2.1.3 Method 3: ?-Peptide Synthesis Using Fluorine-Activated Amino Acids;400
19.2.1.4;21.17.2.1.4 Method 4: Peptide Synthesis Using Triphosgene as the Activating Agent;402
19.2.1.5;21.17.2.1.5 Method 5: Cyclization of Peptides Driven by Microfluidics;405
19.2.1.6;21.17.2.1.6 Method 6: Analysis of Racemization During Peptide Formation;407
19.2.2;21.17.2.2 Synthesis of Drugs;407
19.2.3;21.17.2.3 Carbonylation Reactions;409
19.2.4;21.17.2.4 Lactam Synthesis;411
19.2.5;21.17.2.5 Dendrimer Synthesis;411
19.2.6;21.17.2.6 Miscellaneous Syntheses of Amides;413
20;27.19.5 Azomethine Imines (Update 2017);417
20.1;27.19.5.1 Acyclic Azomethine Imines;417
20.1.1;27.19.5.1.1 Synthesis and Applications of Acyclic Azomethine Imines;417
20.1.1.1;27.19.5.1.1.1 Method 1: In Situ Generation from Hydrazones Followed by [3 +2] Cycloaddition;418
20.1.1.1.1;27.19.5.1.1.1.1 Variation 1: In Situ Generation from Hydrazones with Boron Trifluoride– Diethyl Ether Complex and Subsequent Intramolecular [3+ 2] Cycloaddition;418
20.1.1.1.2;27.19.5.1.1.1.2 Variation 2: In Situ Generation from Hydrazones with Iodosylbenzene and Subsequent [3 + 2] Cycloaddition with Imines;420
20.1.1.2;27.19.5.1.1.2 Method 2: In Situ Generation from Aldehydes and Hydrazides;421
20.1.1.2.1;27.19.5.1.1.2.1 Variation 1: In Situ Generation from Aldehydes and Hydrazides and Reaction with Nucleophiles;421
20.1.1.2.2;27.19.5.1.1.2.2 Variation 2: In Situ Generation from Aldehydes and Hydrazides and Intermolecular [3 + 2] Cycloaddition with Alkynes;423
20.2;27.19.5.2 Azomethine Imines with C—N Incorporated in a Ring;424
20.2.1;27.19.5.2.1 Synthesis and Applications of Azomethine Imines with C—N Incorporated in a Ring;424
20.2.1.1;27.19.5.2.1.1 Method 1: Synthesis of Cyclic Azomethine Imines from 2-(2-Bromoethyl)benzaldehydes and Benzoylhydrazine;424
20.2.1.2;27.19.5.2.1.2 Method 2: Synthesis of Cyclic Azomethine Imines by Intramolecular Cyclization;426
20.2.1.2.1;27.19.5.2.1.2.1 Variation 1: Synthesis of Cyclic Azomethine Imines from Alkynyl Hydrazides;426
20.2.1.2.2;27.19.5.2.1.2.2 Variation 2: Synthesis of Cyclic Azomethine Imines from ?,?-Unsaturated N-Trichloroacetyl and N-Trifluoroacetyl Hydrazones;427
20.2.1.3;27.19.5.2.1.3 Method 3: Synthesis of Cyclic Azomethine Imines from Pyridine Derivatives;428
20.2.1.3.1;27.19.5.2.1.3.1 Variation 1: Synthesis of N-Benzoyl- and N-Tosyliminopyridinium Ylides from Pyridines by Amination and Acylation;428
20.2.1.3.2;27.19.5.2.1.3.2 Variation 2: Synthesis of N-Tosyliminopyridinium Ylides from Pyridines by Metal-Catalyzed Imination with [N-(4-Toluenesulfonyl)imino]phenyliodinane;430
20.2.1.4;27.19.5.2.1.4 Method 4: Metal-Catalyzed Synthesis of Cyclic Azomethine Imines from N?-(2-Alkynylbenzylidene) Hydrazides;431
20.3;27.19.5.3 Azomethine Imines with N—N Incorporated in a Ring;433
20.3.1;27.19.5.3.1 Synthesis and Applications of Azomethine Imines with N—N Incorporated in a Ring;433
20.3.1.1;27.19.5.3.1.1 Method 1: Synthesis from Hydrazones and Alkenes;433
21;35.1.5.1.12 Synthesis of 1-Chloro-n-Heteroatom-Functionalized Alkanes (n ?2) by Addition across C=C Bonds (Update 2017);439
21.1;35.1.5.1.12.1 Method 1: Dichlorination of Alkenes;439
21.1.1;35.1.5.1.12.1.1 Variation 1: Using Manganese(III)/Hydrochloric Acid as the Chlorine Source;439
21.1.2;35.1.5.1.12.1.2 Variation 2: Using an Iodine(III) Reagent as the Chlorine Source;441
21.1.3;35.1.5.1.12.1.3 Variation 3: Using Organic Chlorides as the Chlorine Source;442
21.1.4;35.1.5.1.12.1.4 Variation 4: Using Alkali Metal Chlorides as the Chlorine Source;445
21.1.5;35.1.5.1.12.1.5 Variation 5: Using N-Chlorosuccinimide as the Chlorine Source;447
21.1.6;35.1.5.1.12.1.6 Variation 6: Using a Carbene–Palladium(IV) Chloride Complex as the Chlorine Source;448
21.1.7;35.1.5.1.12.1.7 Variation 7: Organocatalyzed Dichlorination of Alkenes;449
21.2;35.1.5.1.12.2 Method 2: Aminochlorination of Alkenes;451
21.2.1;35.1.5.1.12.2.1 Variation 1: Carbon Dioxide Promoted Aminochlorination of Alkenes Using Chloramine-Tas the Source of Chlorine and Nitrogen;452
21.2.2;35.1.5.1.12.2.2 Variation 2: Transition-Metal-Catalyzed Aminochlorination of Alkenes;453
21.2.3;35.1.5.1.12.2.3 Variation 3: Asymmetric Catalytic Aminochlorination of ?,?-Unsaturated ?-Oxo Esters;455
21.2.4;35.1.5.1.12.2.4 Variation 4: Selenium-Catalyzed Chloroamidation of Alkenes;458
21.2.5;35.1.5.1.12.2.5 Variation 5: Photocatalytic Aminochlorination of Alkenes;459
21.3;35.1.5.1.12.3 Method 3: Halochlorination of Alkenes;460
21.3.1;35.1.5.1.12.3.1 Variation 1: Iodochlorination of Styrene Using Tetramethylammonium Dichloroiodate;460
21.3.2;35.1.5.1.12.3.2 Variation 2: Copper-Catalyzed Bromochlorination of Styrene Using Tetrabutylammonium Dichlorobromate;461
21.3.3;35.1.5.1.12.3.3 Variation 3: Catalytic Enantioselective Bromochlorination of Allylic Alcohols;461
21.4;35.1.5.1.12.4 Method 4: Oxychlorination of Alkenes;463
21.4.1;35.1.5.1.12.4.1 Variation 1: Thiourea Catalyzed Methoxychlorination of Alkenes;463
21.4.2;35.1.5.1.12.4.2 Variation 2: Iodine(III)-Mediated Methoxychlorination of Alkenes;464
21.4.3;35.1.5.1.12.4.3 Variation 3: (Diacetoxyiodo)benzene-Mediated Ethoxychlorination of Enamides;465
21.4.4;35.1.5.1.12.4.4 Variation 4: Organocatalytic Enantioselective Chlorocyclization of Unsaturated Amides;466
21.5;35.1.5.1.12.5 Method 5: Chloroselanylation of Alkenes;468
21.5.1;35.1.5.1.12.5.1 Variation 1: ?-Chloroselanylation of Alkenes with N,NDiethylbenzeneselenenamide in the Presence of Phosphoryl Chloride or Thionyl Chloride;468
21.5.2;35.1.5.1.12.5.2 Variation 2: Chloroselanylation of Alkenes with Phenylselenenyl Chloride;469
21.6;35.1.5.1.12.6 Method 6: Sulfanylchlorination of Alkenes;470
21.7;35.1.5.1.12.7 Method 7: Trihalomethylchlorination of Alkenes;471
21.7.1;35.1.5.1.12.7.1 Variation 1: Trichloromethylchlorination of Alkenes with Trichloromethanesulfonyl Chloride;471
21.7.2;35.1.5.1.12.7.2 Variation 2: Trichloromethylchlorination of Alkenes in Subcritical Carbon Tetrachloride;472
21.7.3;35.1.5.1.12.7.3 Variation 3: Copper/Ruthenium-Catalyzed Trifluoromethylchlorination of Alkenes;473
21.8;35.1.5.1.12.8 Method 8: Azidochlorination of Alkenes;474
21.8.1;35.1.5.1.12.8.1 Variation 1: Azidochlorination of Alkenes with Sodium Azide in the Presence of Sodium Hypochlorite and Acetic Acid;474
21.9;35.1.5.1.12.9 Method 9: Chlorodiacetonylation of Alkenes;476
21.9.1;35.1.5.1.12.9.1 Variation 1: Chlorodiacetonylation of Cycloalkenes with Acetylacetone and Manganese(III) Acetate in the Presence of Hydrochloric Acid;476
22;35.2.1.5.7 Synthesis of Bromoalkanes by Substitution of Oxygen Functionalities (Update 2017);479
22.1;35.2.1.5.7.1 Method 1: Substitution of Alcoholic Hydroxy Groups;479
22.1.1;35.2.1.5.7.1.1 Variation 1: Reaction of Alcohols with Oxalyl Chloride and Lithium Bromide under Catalysis by Triphenylphosphine Oxide;479
22.1.2;35.2.1.5.7.1.2 Variation 2: Reaction of Alcohols with Diethyl Bromomalonate and Diphenylsilane under Catalysis of 5-Phenyldibenzophosphole;480
22.1.3;35.2.1.5.7.1.3 Variation 3: Reaction of Primary Alcohols with 7,7-Dichlorocyclohepta- 1,3,5-triene and Tetrabutylammonium Bromide;481
22.1.4;35.2.1.5.7.1.4 Variation 4: Reaction of Alcohols with 2,2-Dibromo- 1,3-dicyclohexylimidazolidine-4,5-dione;482
22.1.5;35.2.1.5.7.1.5 Variation 5: Reaction of Alcohols with tert-Butyl Bromide in the Ionic Liquid 3-Methyl-1-pentylimidazolium Bromide;483
22.2;35.2.1.5.7.2 Method 2: Cleavage of Silyl- and Tetrahydropyranyl-Protected Alcohols;484
22.2.1;35.2.1.5.7.2.1 Variation 1: Reaction of Tetrahydropyranyl Ethers with Dibromotriphenylphosphorane;484
22.2.2;35.2.1.5.7.2.2 Variation 2: Reaction of Tetrahydropyranyl and Silyl Ethers with N-Bromosaccharin–Triphenylphosphine;486
22.2.3;35.2.1.5.7.2.3 Variation 3: Reaction of Tetrahydropyranyl and Silyl Ethers in Ionic Liquids;487
22.3;35.2.1.5.7.3 Method 3: Substitution of Sulfonyloxy Groups;488
22.3.1;35.2.1.5.7.3.1 Variation 1: Reaction of Arene- or Methanesulfonates with Lithium Bromide in Tetrahydrofuran;488
22.3.2;35.2.1.5.7.3.2 Variation 2: Reaction of Methanesulfonates with Magnesium Bromide– Diethyl Ether Complex;489
22.3.3;35.2.1.5.7.3.3 Variation 3: Reaction of Arene- or Methanesulfonates with the Ionic Liquid 1-Butyl-3-methylimidazolium Bromide;490
23;35.2.2.2 Propargylic Bromides (Update 2017);493
23.1;35.2.2.2.1 Method 1: Synthesis by Heteroatom Substitution: Substitution of Hydroxy or Tetrahydropyranyl Ether Groups;493
23.1.1;35.2.2.2.1.1 Variation 1: Reaction of Propargylic Alcohols with Phosphorus Tribromide in Perfluorohexane;494
24;35.2.3.3.3 Synthesis of Benzylic Bromides by Substitution of ?-Bonded Heteroatoms (Update 2017);497
24.1;35.2.3.3.3.1 Method 1: Substitution of Oxygen Functionalities;497
24.1.1;35.2.3.3.3.1.1 Variation 1: Reaction of (Hydroxymethyl)phenols with 2,4,6-Trichloro- 1,3,5-triazine and Sodium Bromide;500
24.1.2;35.2.3.3.3.1.2 Variation 2: Reaction of Benzylic Alcohols with Poly(vinylpyrrolidin- 2-one)–Bromine Complex and Hexamethyldisilane;501
24.1.3;35.2.3.3.3.1.3 Variation 3: Reaction of Benzylic Alcohols with Monolithic Triphenylphosphine Reagent and Carbon Tetrabromide;502
25;35.2.4.2.3 Synthesis of Allylic Bromides by Substitution of ?-Bonded Heteroatoms (Update 2017);505
25.1;35.2.4.2.3.1 Method 1: Substitution of Other Halogens;505
25.1.1;35.2.4.2.3.1.1 Variation 1: Reaction of Allylic Chlorides with 1,2-Dibromoethane under Rhodium Catalysis;505
25.2;35.2.4.2.3.2 Method 2: Substitution of Hydroxy Groups;505
26;Author Index;509
27;Abbreviations;527


Abstracts


3.6.16 Gold-Catalyzed Cycloaddition Reactions


Since about 2000, a “gold rush” has resulted in the development of numerous gold-catalyzed cycloaddition reactions. Such cycloadditions have now become a powerful and privileged method for the construction of carbo- and heterocycles, in particular those complex polycyclic structures featured in diverse natural products. This chapter is organized according to the key reactive gold intermediate that formally participates in the cycloaddition.

Keywords: gold · cycloaddition · carbocycles · heterocycles · carbophilic activation · alkynes · 1,n-dipolar · allenes · alkenylgold · gold · carbenes · benzopyryliums · furylgold species · cycloisomerization · acyloxy migration · alkyne oxidation · nitrene transfer · carbene transfer · diazo decomposition · s-Lewis acid · enantioselective

4.4.7 Silylboron Reagents


This update describes the development of silylboron chemistry since the initial summary in by Hemeon and Singer in 2002. In the first part, an overview of the methods to prepare silylboron reagents by nucleophilic substitution, Si-H bond activation, or reductive coupling is provided, and possibilities for further functionalization are presented. The second section comprehensively covers all aspects of the synthetic applications of silylboron compounds, ranging from transition-metal catalysis to transmetalation reactions and Si-B bond activation with Lewis bases. The presented methodologies include silaboration and silylation of unsaturated carbon–carbon bonds, addition and substitution reactions with nucleophilic silicon reagents, silaboration of strained rings under C-C bond cleavage, and Si-B insertion reactions of carbenoids and related compounds.

Keywords: silicon · boron · interelement compounds · main-group chemistry · silaboration · silylation · borylation · difunctionalization · transition-metal catalysis · asymmetric catalysis · oxidative addition · transmetalation · carbenoid insertion · 1,2-addition · 1,4-addition · allylic substitution · propargylic substitution · aromatic substitution

4.4.11 Silyllithium and Related Silyl Alkali Metal Reagents


This chapter is a revision of the earlier contribution describing methods for the synthesis of silyllithium reagents and related compounds of the heavier alkali metals. Various synthetic routes to silyl alkali metal reagents are presented, employing different reaction types including reductive or nucleophilic cleavage of disilanes, reductive metalation of silyl halides, and cleavage of Si-H bonds.

Keywords: silyllithium reagents · lithium compounds · alkali metal compounds · sodium compounds · potassium compounds · reductive cleavage · cleavage reactions · silicon compounds · silanes

4.4.19.4 Silyl Sulfides and Selenides

This chapter is an update to the earlier contribution describing methods for the synthesis of silyl sulfides and silyl selenides. Various efficient synthetic routes to these compounds are shown. The use of disilyl sulfides and disilyl selenides as versatile reagents in synthesis is highlighted.

Keywords: silyl sulfides · silyl selenides · sulfur · silanes

4.4.24.3 Silyl Cyanides

This chapter is an update to the earlier contribution describing methods for the synthesis of silyl cyanides. It focuses on the literature published in the period 1997–2015.

Keywords: silanes · silenes · silicon compounds · cyanides · silyl halides

4.4.47 Silanols


This chapter covers synthetic approaches toward and selected applications of organosilanols. The focus is on the literature published in the period 2000–2015.

Keywords: silanols · silanediols · silanes · metal catalysis · organocatalysis · directing groups

10.22.2 Azaindol-1-ols


This chapter presents the little-known azaindol-1-ol family. Methods for the preparation as well as the reactivity of each isomer are covered.

Keywords: azaindol-1-ols · cyclization · reduction · oxidation · O-alkylation

10.22.3 1,3-Dihydroazaindol-2-ones


This chapter reviews the synthesis and reactivity of 1,3-dihydroazaindol-2-ones described in the literature until mid-2014. Synthetic methods and substituent modifications are reviewed for each isomer.

Keywords: 1,3-dihydroazaindol-2-ones · azaoxindoles · cyclization · reduction · rearrangement · radical cyclization · C3-alkylation · C3-aldolization

10.22.4 1,2-Dihydroazaindol-3-ones


This chapter reviews the synthesis and reactivity of 1,2-dihydroazaindol-3-ones (azaindoxyls) and related 1,2-dihydroazaindol-3-yl acetates. Synthetic preparations are reviewed for all isomers except for 1,2-dihydro-3-pyrrolo[2,3-]pyridin-3-ones.

Keywords: 1,2-dihydroazaindol-3-ones · azaindoxyls · 1,2-dihydroazaindol-3-yl acetates · cyclization · C2-aldolization

10.22.5 1-Azaindole-2,3-diones


This chapter reviews the synthesis and reactivity of 1-azaindole-2,3-diones (azaisatins). It focuses on the literature published until mid-2014. Synthetic preparations are reviewed for 1-pyrrolo[3,2-]pyridine-2,3-diones, 1-pyrrolo[3,2-]pyridine-2,3-diones, and 1-pyrrolo[2,3-]pyridine-2,3-diones.

Keywords: 1-azaindole-2,3-diones · azaisatins · cyclization · bromination · oxidation · 1-pyrrolo[3,2-]pyridine-2,3-diones · 1-pyrrolo[3,2-]pyridine-2,3-diones · 1-pyrrolo[2,3-]pyridine-2,3-diones

10.22.6 Azaindol-2- and Azaindol-3-amines


This chapter presents methods for the preparation of azaindol-2-amines and azaindol-3-amines published in the literature until mid-2014. Synthetic methods are described for each isomer.

Keywords: azaindol-2-amines · azaindol-3-amines · cyclization · nitrosation · reduction

21.17 Synthesis of Amides (Including Peptides) in Continuous-Flow Reactors


Microreactors are powerful tools which present excellent mass- and heat-transfer performance properties for various kinds of chemical reaction. In this chapter, we present a brief introduction to microreactors, followed by an overview of the different microfluidic methods available for the synthesis of amides (including peptides). The range of peptides obtained via microreactor use includes di- to pentapeptides and also some cyclic analogues. Other continuous-flow reactions involving amide-bond formation are also illustrated, including examples of carbonylation, dendrimer preparation, and drug synthesis. The noteworthy features of these microfluidic reactions include shorter reaction times, high yields, and significantly less wastage. They are thus a step toward environmentally friendly, green reactions.

Keywords: amides · continuous-flow reactions · flow chemistry · green chemistry · microfluidics · microreactors · peptides

27.19.5 Azomethine Imines


This chapter is an update to the earlier contribution describing methods for the synthesis of azomethine imines and focuses on the literature published in the period 2003–2014. As azomethine imines are commonly generated in situ, and subsequently trapped with suitable reaction partners, their applications in synthesis are also presented herein.

Keywords: azomethine imines · cycloaddition reactions · dipolar cycloaddition · hydrazones · intramolecular cycloaddition

35.1.5.1.12 Synthesis of 1-Chloro-n-Heteroatom-Functionalized Alkanes by Addition across C-C Bonds

Chlorination of alkenes is an important synthetic process in organic chemistry. Several approaches for the chlorination of alkenes have been developed, including dichlorination, aminochlorination, halochlorination, oxychlorination, sulfanylchlorination, trihalomethylchlorination, and...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.