E-Book, Englisch, 326 Seiten, eBook
K G / Kurni A Beginner’s Guide to Learning Analytics
Erscheinungsjahr 2021
ISBN: 978-3-030-70258-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 326 Seiten, eBook
Reihe: Advances in Analytics for Learning and Teaching
ISBN: 978-3-030-70258-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Lower undergraduate
Autoren/Hrsg.
Weitere Infos & Material
Chapter 1.- Introduction to Learning Analytics.- 1.1. Introduction to Learning Analytics.- 1.2. Learning analytics: A new and rapidly developing field.- 1.3. Benefits and Challenges of learning analytics.- 1.4. Ethical Concerns with Learning Analytics.- 1.5. Use of Learning analytics.- 1.6. Conclusion.- 1.7. Review Questions.- Chapter 2 Educational Data Mining & Learning Analytics.- 2.1. Introduction.- 2.2. Educational Data Mining (EDM).- 2.3. Educational Data Mining & Learning analytics.- 2.4. Educational Data Mining & Learning analytics Applications.- 2.5. Conclusion.- 2.6. Review Questions.- Chapter 3.-Preparing for Learning Analytics.- 3.1. Introduction.- 3.2. Role of Psychology in Learning analytics.- 3.3. Architecting the learning analytics environment.- 3.4. Major Barriers for adopting Learning Analytics.-3.5. Case Studies.- 3.6. Conclusion.- 3.7. Review Questions.- Chapter 4. Data requirements for Learning analytics.- 4.1. Introduction.- 4.2. Types of data used for Learning Analytics.- 4.3. Data Models used to represent usage data for Learning analytics.- 4.4. Data Privacy maintenance in Learning analytics.- 4.5. Case Studies.- 4.6. Conclusion.- 4.7. Review Questions.- Chapter 5. Tools for Learning Analytics.- 5.1. Introduction.- 5.2. Popular Learning Analytics Tools.- 5.3. Choosing a Tool.- 5.4. Strategies to Successfully Deploy a Tool.- 5.5. Exploring Learning Analytics Tools.- 5.6. Case Studies.- 5.7. Developing a Learning analytics Tool.- 5.8. Conclusion.- 5.9. Review Questions.-Chapter 6.- Other Technology Approaches to Learning Analytics.- 6.1. Introduction.- 6.2. Big Data & Learning Analytics.- 6.3. Data Science & Learning Analytics.- 6.4. AI & Learning Analytics.- 6.5. Machine Learning & Learning Analytics.- 6.6. Deep Learning & Learning Analytics.- 6.7. Case Studies.- 6.8. Conclusion.- 6.9. Review Questions.- Chapter 7.- Learning Analytics in Massive Open Online Courses.- 7.1 Introduction to MOOCs.- 7.2. From MOOCs to Learning analytics.- 7.3. Integrating Learning analytics with MOOCs.- 7.4. Benefits of applying Learning Analytics in MOOCs.- 7.5. Major Concerns of implementing Learning Analytics in MOOCs.- 7.6. Limitation of Applying Learning Analytics in MOOCs.- 7.7. Tools that support Leaning analytics in MOOCs.- 7.8. Case Studies.- 7.9. Conclusion.- 7.10. Review Questions.- Chapter 8.- The Pedagogical perspective of Learning Analytics.- 8.1. Introduction to Pedagogy.- 8.2. Learning Analytics based Pedagogical Framework.- 8.3. Pedagogical Interventions.- 8.4. Learning Analytics based Pedagogical Models.- 8.5. Case studies.- 8.6. Conclusion.- 8.7. Review Questions.- Chapter 9. Moving Forward.- 9.1. Self-Learning and Learning analytics.- 9.2. Lifelong learning and learning analytics.- 9.3. Present and future trend of learning analytics in the world.- 9.4. Measuring 21st Century Skills using Learning analytics.- 9.5. Moving Forward.- 9.6. Smart Learning analytics.- 9.7. Case Studies.- 9.8. Conclusion.- 9.9. Review Questions.-Chapter 10.- Case Studies.- 10.1. Recommender systems using learning analytics.- 10.2. Learning Analytics in Higher Education.- 10.3. Other Evidences on the use of Learning Analytics.- Chapter 11. Problems.