E-Book, Englisch, Band Volume 96, 292 Seiten
Reihe: Progress in Molecular Biology and Translational Science
Kaestner Development, Differentiation, and Disease of the Luminal Gastrointestinal Tract
1. Auflage 2010
ISBN: 978-0-12-381281-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, Band Volume 96, 292 Seiten
Reihe: Progress in Molecular Biology and Translational Science
ISBN: 978-0-12-381281-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Understanding how digestive organs develop, their physiology and structure is important for determining new therapies to combat diseases of the digestive organs. Development, Differentiation, and Disease of the Luminal Gastrointestinal Tract reviews the latest research and developments in this field. - Discusses new discoveries, approaches, and ideas - Contributions from leading scholars and industry experts - Includes reference guide for researchers involved in molecular biology and related fields
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Progress In Molecular Biology and Translational Science: Development, Differentiation, and Disease of the Luminal Gastrointestinal Tract ;4
3;Copyright;5
4;Contents;6
5;Contributors;12
6;Preface;14
7;Chapter 1: Formation of the Murine Endoderm;16
7.1;I. Introduction;17
7.2;II. Endoderm Morphogenesis;18
7.3;III. Molecular Control of Endoderm Formation;32
7.4;IV. Conclusions;41
7.5;References;42
8;Chapter 2: Dividing the Tubular Gut: Generation of Organ Boundaries at the Pylorus;50
8.1;I. Overview;51
8.2;II. Paths to the Pylorus; Movements of Endodermal and Mesodermal Cells During Gut Tube Formation;53
8.3;III. Organ Formation in the Pyloric Domain;54
8.4;IV. Molecular Patterning of the Gut Tube: Establishing Stomach and Intestinal Domains;57
8.5;V. Establishing the Boundary Between Sox2- and Cdx2-Expressing Cells at the Pylorus;64
8.6;VI. Making the Pyloric Sphincter;66
8.7;VII. The Pylorus: A Compartment Boundary;69
8.8;Acknowledgments;72
8.9;References;72
9;Chapter 3: Molecular Determinants of Metaplastic and Neoplastic Transformation in the Esophageal Epithelium;78
9.1;I. Introduction;79
9.2;II. Esophageal Mucosal Homeostasis and Response to Injury-The Framework;79
9.3;III. Esophageal Mucosal Homeostasis-Molecular Determinants;84
9.4;IV. The Response to Injury, Metaplastic and Neoplastic Transformation in Esophagus-Molecular Derangements;86
9.5;V. Implications of Molecular Determinants, Derangements, and Future Research;99
9.6;References;100
10;Chapter 4: The Gastric Mucosa: Development and Differentiation;108
10.1;I. Introduction;109
10.2;II. Early Foregut Development;109
10.3;III. Specification of the Stomach as a Separate Organ: An Overview;110
10.4;IV. Morphogenetic Codes Involved in Stomach Specification;111
10.5;V. Transcription Factors;116
10.6;VI. Postnatal Gastric Development;119
10.7;VII. Adult Gastric Homeostasis;121
10.8;VIII. Morphogenetic Pathways in Maintaining Adult Gastric Homeostasis;124
10.9;IX. Concluding Remarks;125
10.10;Acknowledgment;126
10.11;References;126
11;Chapter 5: Oxyntic Atrophy, Metaplasia, and Gastric Cancer;132
11.1;I. Organization of the Normal Gastric Oxyntic Mucosa;133
11.2;II. The Development of Preneoplastic Metaplasia in the Stomach;133
11.3;III. Parietal Cell Loss Leads to Metaplasia in Mice;135
11.4;IV. What Factors Regulate the Induction of Metaplasia?;136
11.5;V. Cellular Origin of Metaplasia;137
11.6;VI. The Relationship of SPEM to Intestinal Metaplasia;138
11.7;VII. An Understanding of Metaplasia and the Development of Biomarkers for Preneoplasia;140
11.8;VIII. Future Directions for Understanding Metaplasia in the Stomach;142
11.9;Acknowledgments;142
11.10;References;142
12;Chapter 6: Hedgehog Signaling in Gastric Physiology and Cancer;148
12.1;I. Introduction;149
12.2;II. Hedgehog Gene Discovered in Mutagenesis Screens;149
12.3;III. Hh Ligands;150
12.4;IV. Regulation of Shh Gene Expression;151
12.5;V. Shh Processing;153
12.6;VI. Hh Receptors;154
12.7;VII. Primary Cilia and Hh Signaling;155
12.8;VIII. Hh Signaling and Gastric Physiology;157
12.9;Acknowledgments and Disclosures;165
12.10;References;165
13;Chapter 7: The Intestinal Stem Cell;172
13.1;I. Introduction;173
13.2;II. Monoclonality of Intestinal Crypts;174
13.3;III. The Identity and Localization of Intestinal Stem Cells;175
13.4;IV. Other Putative Intestinal Stem Cell Markers;177
13.5;V. The Intestinal Stem Cell Niche;178
13.6;VI. Evidence for a Nonmesenchymal Niche;183
13.7;VII. Intestinal Stem Cells as the Cell of Origin of Colorectal Cancer;184
13.8;VIII. Conclusion;185
13.9;References;185
14;Chapter 8: The Role of the Basement Membrane as a Modulator of Intestinal Epithelial-Mesenchymal Interactions;190
14.1;I. Introduction;191
14.2;II. Models of Epithelial-Mesenchymal Interactions in Developing Intestine;192
14.3;III. The Intestinal Basement Membrane;194
14.4;IV. Influence of the Extracellular Matrix in Epithelial Differentiation;199
14.5;V. Interplay between Basement Membrane Molecules and Transcription Factors;202
14.6;VI. Involvement of Basement Membrane Proteins at the Epithelial-Mesenchymal Interface in the Intestine: Use of Gene Ablation Models;207
14.7;VII. Genetic Inactivation of Laminin Receptors Leads to Intestinal Abnormalities;213
14.8;VIII. Conclusion and Future Directions;214
14.9;IX. Future Directions;215
14.10;Acknowledgments;215
14.11;References;216
15;Chapter 9: Regulation of Gene Expression in the Intestinal Epithelium;222
15.1;I. Introduction;223
15.2;II. Hedgehog Signaling;224
15.3;III. Forkhead Box Transcription Factors;225
15.4;IV. Homeobox Genes;228
15.5;V. Parahox Genes;228
15.6;VI. GATA Transcription Factors;230
15.7;VII. WNT Signaling;230
15.8;VIII. EPH/Ephrins;232
15.9;IX. SOX9;232
15.10;X. BMP Signaling;233
15.11;XI. PTEN/PI3K;234
15.12;XII. LKB1 Signaling;234
15.13;XIII. K-RAS;235
15.14;XIV. Notch Signaling;235
15.15;XV. HNF;236
15.16;XVI. MATH 1;237
15.17;XVII. Integration of Notch and WNT Signaling;237
15.18;XVIII. Emerging Mechanisms of Gene Regulation;237
15.19;Acknowledgments;239
15.20;References;239
16;Chapter 10: Cdx Genes, Inflammation, and the Pathogenesis of Intestinal Metaplasia;246
16.1;I. Introduction: Metaplasia, Dysplasia, and Transdifferentiation;247
16.2;II. The Cdx Genes and Their Roles During Normal Development;249
16.3;III. Intestinal Metaplasia is a Pathological Condition in Humans;252
16.4;IV. Chronic Gastric Inflammation Gives Rise to Gastric Intestinal Metaplasia (GIM);254
16.5;V. Chronic Acid and Bile Reflux in the Esophagus Give Rise to Barrett's Esophagus;255
16.6;VI. Intestinal Metaplasia and Inflammation;258
16.7;VII. DNA Damage from Chronic Inflammation Promotes Metaplasia and Carcinogenesis;260
16.8;VIII. The Roles of Cdx1 and Cdx2 in H. pylori Induced GIM;262
16.9;IX. The Roles of Cdx1 and Cdx2 in GERD-Induced Barrett's Esophagus;266
16.10;X. Summary and Conclusions;273
16.11;References;274
17;Index;286