E-Book, Englisch, Band 1, 342 Seiten
Reihe: Life in Extreme Environments
Kallmeyer / Wagner Microbial Life of the Deep Biosphere
1. Auflage 2014
ISBN: 978-3-11-030013-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, Band 1, 342 Seiten
Reihe: Life in Extreme Environments
ISBN: 978-3-11-030013-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Research scientists and graduate students in microbiology, geomircobiology, ecology, environmental sciences
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface;5
2;Contributing authors;15
3;1 Studies on prokaryotic populations and processes in subseafloor sediments-an update;19
3.1;1.1 New sites investigated;19
3.1.1;1.1.1 Southeast Atlantic sector of the Southern Ocean (Leg 177);19
3.1.2;1.1.2 Woodlark Basin, near Papua New Guinea, Pacific Ocean (Leg 180);22
3.1.3;1.1.3 Leg 185, Site 1149 in the Izu-Bonin Trench Western Equatorial Pacific;24
3.1.4;1.1.4 Nankai Trough (Leg 190), subduction zone/accretionary prism, Pacific Ocean;25
3.1.5;1.1.5 Eastern Equatorial Pacific and Peru Margin Sites 1225–1231 (Leg 201);28
3.1.6;1.1.6 Newfoundland Margin (Leg 210);30
3.1.7;1.1.7 Carbonate mound (IODP Expedition 307);31
3.2;1.2 High-pressure cultivation – DeepIsoBUG, gas hydrate sediments;33
3.3;1.3 Subseafloor biosphere simulation experiments;36
3.4;1.4 Conclusions;38
4;2 LifeintheOceanicCrust;47
4.1;2.1 Introduction;47
4.2;2.2 Sampling tools;48
4.2.1;2.2.1 Tools for accessing the deep basement biosphere;50
4.3;2.3 Contamination;54
4.3.1;2.3.1 Contamination induced during drilling;54
4.3.2;2.3.2 Contamination during fluid sampling;56
4.4;2.4 Direct evidence for life in the deep ocean crust;56
4.4.1;2.4.1 Textural alterations;57
4.4.2;2.4.2 Geochemical evidence from fluids;58
4.4.3;2.4.3 Geochemical evidence from rocks;59
4.4.4;2.4.4 Genetic surveys;63
4.5;2.5 Future directions;69
5;3 Microbial life in terrestrial hard rock environments;81
5.1;3.1 Hard rock aquifers from the perspective of microorganisms;81
5.2;3.2 Windows into the terrestrial hard rock biosphere;82
5.2.1;3.2.1 Sampling methods for microbes in hard rock aquifers;82
5.2.2;3.2.2 Yesterday marine – terrestrial today;83
5.2.3;3.2.3 Basalts and ophiolites;84
5.2.4;3.2.4 Granites;86
5.2.5;3.2.5 Hard rocks of varying origin;88
5.3;3.3 Energy from where?;89
5.3.1;3.3.1 Deep reduced gases;90
5.4;3.4 Activity;91
5.4.1;3.4.1 Stable isotopes;91
5.4.2;3.4.2 Geochemical indicators;92
5.4.3;3.4.3 In vitro activity;92
5.4.4;3.4.4 In situ activity;92
5.4.5;3.4.5 Phages may control activity rates;94
5.5;3.5 What’s next in the exploration of microbial life in deep hard rock aquifers?;94
6;4 Technological state of the art and challenges;101
6.1;4.1 Basic concepts and difficulties inherent to the cultivation of subseafloor prokaryotes;101
6.2;4.2 Microbial growth monitoring,method detection limits and innovative cultivation methods;109
6.3;4.3 Challenges and research needs (instrumental, methodological and logistics needs);110
7;5 Detecting slow metabolism in the subseafloor: analysis of single cells using NanoSIMS;119
7.1;5.1 Introduction;119
7.2;5.2 Overview of ion imaging with a NanoSIMS ion microprobe;120
7.3;5.3 Detecting slow metabolism: bulk to single cells;123
7.3.1;5.3.1 Bulk measurement of subseafloor microbial activity using radiotracers;123
7.3.2;5.3.2 Observing radioactive substrate incorporation at the cellular level: microautoradiography;124
7.3.3;5.3.3 Quantitative analysis of stable isotope incorporation using NanoSIMS;125
8;4 Bridging identification and functional analysis of microbes using elemental labeling;128
8.1;5.5 Critical step for successful NanoSIMS analysis: sample preparation;130
8.2;5.6 Future directions;132
9;6 Quantifying microbes in the marine subseafloor: some notes of caution;139
9.1;6.1 Introduction;139
9.2;6.2 Quantification of specific microbial groups in marine sediments;142
9.3;6.3 Assessment of quantitative methods in marine sediments: the Leg 201 Peru Margin example;146
9.4;6.4 Global meta-analysis of FISH, CARD-FISH and qPCR quantifications of bacteria and archaea;150
9.5;6.5 Future outlook;152
10;7 Archaea in deep marine subsurface sediments;161
10.1;7.1 Introduction;161
10.2;7.2 Archaeal Ribosomal RNA phylogeny;161
10.3;7.3 Marine subsurface Archaea;162
10.4;7.4 Archaeal habitat preferences in the subsurface;167
10.5;7.5 Methanogenic and methane-oxidizing archaea;170
10.6;7.6 Archaeal abundance and ecosystem significance in the subsurface;172
11;8 Petroleum: from formation to microbiology;179
11.1;8.1 Introduction;179
11.2;8.2 Petroleum formation;179
11.2.1;8.2.1 Petroleum system;181
11.3;8.3 Petroleum microbiology;184
11.3.1;8.3.1 The sulfate-reducing prokaryotes;186
11.3.2;8.3.2 The methanoarchaea;189
11.3.3;8.3.3 The fermentative prokaryotes;192
11.3.4;8.3.4 Other metabolic lifestyle bacteria;195
11.4;8.4 Conclusion;197
12;9 Fungi in the marine subsurface;205
12.1;9.1 Introduction;205
12.2;9.2 The concept of marine fungi;205
12.3;9.3 Fungi in marine near-surface sediments in the deep sea;207
12.4;9.4 Fungi in the deep subsurface;208
12.4.1;9.4.1 Initial whole community and prokaryote-focused studies of the marine subsurface yielding information on eukaryotes;208
12.4.2;9.4.2 Eukaryote-focused studies yielding information on fungi in the deep subsurface;209
12.5;9.5 How deep do fungi go in the subsurface?;215
12.6;9.6 Summary;215
13;10 Microbes in geo-engineered systems: geomicrobiological aspects of CCS and Geothermal Energy Generation;221
13.1;10.1 Introduction;221
13.1.1;10.1.1 Carbon Capture and Storage (CCS);222
13.1.2;10.1.2 Geothermal energy and aquifer energy storage;223
13.2;10.2 Microbial diversity in geo-engineered reservoirs;224
13.3;10.3 Interactions between microbes and geo-engineered systems;226
13.3.1;10.3.1 General considerations;226
13.3.2;10.3.2 Microbial processes in the deep biosphere potentially affected by CCS;227
13.3.3;10.3.3 Examples from a CCS pilot site, CO2 degasing sites and laboratory experiments;229
13.3.4;10.3.4 Impact of microbially-driven processes on CO2 trapping mechanisms;231
13.3.5;10.3.5 Impact of microbially-driven processes on CCS facilities;232
13.3.6;10.3.6 Impact of microbially-driven processes on geothermal energy plants;232
13.4;10.4 Methods to analyze the interaction between geo-engineered systems and the deep biosphere;234
13.4.1;10.4.1 Sampling of reservoir fluids and rock cores;234
13.4.2;10.4.2 Methods to analyze microbes in geo-engineered systems;234
14;11 The subsurface habitability of terrestrial rocky planets: Mars;243
14.1;11.1 Introduction;243
14.2;11.2 The subsurface of Mars – our current knowledge;244
14.3;11.3 Martian subsurface habitability, past and present;251
14.3.1;11.3.1 Vital elements (C, H, N, O, P, S);251
14.3.2;11.3.2 Other micronutrients and trace elements;252
14.3.3;11.3.3 Liquid water through time;253
14.3.4;11.3.4 Redox couples;256
14.3.5;11.3.5 Radiation;257
14.3.6;11.3.6 Other physical and environmental factors;257
14.3.7;11.3.7 Acidity;258
14.4;11.4 Impact craters and deep subsurface habitability;260
14.5;11.5 The near-subsurface habitability of present and recent Mars – an empirical example;261
14.6;11.6 Uninhabited, but habitable subsurface environments?;263
14.7;11.7 Ten testable hypotheses on habitability of the Martian subsurface;265
14.8;11.8 Sampling the subsurface of Mars;268
14.9;11.9 Conclusion;269
15;12 Assessing biosphere-geosphere interactions over geologic time scales: insights from Basin Modeling;279
15.1;12.1 Introduction;279
15.2;12.2 Basin Modeling;280
15.3;12.3 Modeling processes at the deep bio-geo interface;282
15.3.1;12.3.1 Feeding the deep biosphere (biogenic gas);282
15.3.2;12.3.2 Petroleum biodegradation;285
15.4;12.4 Modeling processes at the shallow bio-geo interface;292
15.5;12.5 Conclusions;293
16;13 Energetic constraints on life in marine deep sediments;297
16.1;13.1 Introduction;297
16.2;13.2 Previous work;298
16.3;13.3 Study site overview;298
16.3.1;13.3.1 Juan de Fuca (JdF);299
16.3.2;13.3.2 Peru Margin (PM);299
16.3.3;13.3.3 South Pacific Gyre (SPG);300
16.4;13.4 Overview of catabolic potential;300
16.5;13.5 Comparing deep biospheres;306
16.6;13.6 Electron acceptor utilization;308
16.7;13.7 Energy demand;310
16.8;13.8 Concluding remarks;311
16.9;13.9 Computational methods;311
16.9.1;13.9.1 Thermodynamic properties of anhydrous ferrihydrite and pyrolusite;312
17;14 Experimental assessment of community metabolism in the subsurface;321
17.1;14.1 Introduction;321
17.1.1;14.1.1 The energy source;321
17.1.2;14.1.2 The carbon budget;322
17.1.3;14.1.3 Distribution vertical of microbial metabolism the sediment pile;323
17.2;14.2 Quantifiable metabolic processes;324
17.2.1;14.2.1 Reaction diffusion modeling and mass balances;325
17.2.2;14.2.2 Measurements of rates of energy metabolism with exotic isotopes;330
17.3;14.3 Summary;333
18;Index;337