Kasruddin Nasir / Ahmad / Saari | InECCE2019 | E-Book | sack.de
E-Book

E-Book, Englisch, Band 632, 880 Seiten, eBook

Reihe: Lecture Notes in Electrical Engineering

Kasruddin Nasir / Ahmad / Saari InECCE2019

Proceedings of the 5th International Conference on Electrical, Control & Computer Engineering, Kuantan, Pahang, Malaysia, 29th July 2019
1. Auflage 2020
ISBN: 978-981-15-2317-5
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the 5th International Conference on Electrical, Control & Computer Engineering, Kuantan, Pahang, Malaysia, 29th July 2019

E-Book, Englisch, Band 632, 880 Seiten, eBook

Reihe: Lecture Notes in Electrical Engineering

ISBN: 978-981-15-2317-5
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents the proceedings of the 5th International Conference on Electrical, Control & Computer Engineering 2019, held in Kuantan, Pahang, Malaysia, on 29th July 2019. Consisting of two parts, it covers the conferences’ main foci: Part 1 discusses instrumentation, robotics and control, while Part 2 addresses electrical power systems. The book appeals to professionals, scientists and researchers with experience in industry.The conference provided a platform for professionals, scientists and researchers with experience in industry.

Kasruddin Nasir / Ahmad / Saari InECCE2019 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;7
2;Contents;10
3; Instrumentation, Control and Artificial Systems;19
3.1; Position Control of Pneumatic Actuator Using Cascade Fuzzy Self-adaptive PID;20
3.1.1;1 Introduction;20
3.1.2;2 Mathematical Model of Pneumatic System;21
3.1.3;3 Cascade Fuzzy Self-adaptive PID Controller Design;23
3.1.4;4 Results and Discussion;25
3.1.5;5 Conclusion;29
3.1.6;References;30
3.2; Effect of Excitation Frequency on Magnetic Response Induced by Front- and Back-Side Slits Measured by a Differential AMR Sensor Probe;32
3.2.1;1 Introduction;33
3.2.2;2 Experimental Setup;34
3.2.2.1;2.1 MFL Probe;34
3.2.2.2;2.2 Measurement System;35
3.2.3;3 Results and Discussions;37
3.2.3.1;3.1 Front Side and Back Side Measurement;37
3.2.3.2;3.2 Graph of Slope of Trendline of the Delta Values of Real and Imaginary Parts of the Front Side and Back Side Measurement;39
3.2.4;4 Conclusions;40
3.2.5;References;41
3.3; Model-Free PID Controller Based on Grey Wolf Optimizer for Hovering Autonomous Underwater Vehicle Depth Control;42
3.3.1;1 Introduction;43
3.3.2;2 HAUV Model;44
3.3.3;3 Controller Design;45
3.3.3.1;3.1 PID Controller;45
3.3.3.2;3.2 Grey Wolf Optimization (GWO);46
3.3.4;4 Results and Discussion;48
3.3.5;5 Conclusion;51
3.3.6;References;51
3.4; Experimental Study of Optimization of Electrode Dimension for Non-invasive Electrical Resistance Tomography Application;53
3.4.1;1 Introduction;53
3.4.2;2 The Basic Principle of ERT;54
3.4.3;3 Methodology;55
3.4.4;4 Results and Discussion;58
3.4.5;5 Conclusion;61
3.4.6;References;61
3.5; A Fictitious Reference Iterative Tuning Method for Buck Converter-Powered DC Motor Control System;62
3.5.1;1 Introduction;62
3.5.2;2 Problem Statements;64
3.5.2.1;2.1 Buck-Converter Powered Dc Motor Model;65
3.5.3;3 Algorithm for Controller Tuning;66
3.5.3.1;3.1 A Brief Review of SKF Algorithm;66
3.5.3.2;3.2 Fictitious Reference Iterative Tuning;67
3.5.4;4 Numerical Example;69
3.5.5;5 Conclusion;71
3.5.6;References;72
3.6; Depth Evaluation of Slits on Galvanized Steel Plate Using a Low Frequency Eddy Current Probe;74
3.6.1;1 Introduction;74
3.6.2;2 Measurements;75
3.6.2.1;2.1 Magnetic Sensor Probe;75
3.6.2.2;2.2 Measurement System and Test Sample;76
3.6.3;3 Results and Discussion;77
3.6.3.1;3.1 Signal Analysis;77
3.6.3.2;3.2 Frequency Response Characteristic;78
3.6.4;4 Conclusion;80
3.6.5;References;81
3.7; Sensitivity Maps Preparation for Electrical Capacitance Tomography Using Finite Element Approach;82
3.7.1;1 Introduction;83
3.7.2;2 Sensitivity Map Generation;84
3.7.2.1;2.1 Experimental Set-Up;85
3.7.2.2;2.2 Post-processing Data;87
3.7.3;3 Results and Discussion;87
3.7.4;4 Conclusion;89
3.7.5;References;89
3.8; Infrared Thermal Sensor for a Low Cost and Non-invasive Detection of Skin Cancer;91
3.8.1;1 Introduction;92
3.8.2;2 Device Design and Instrumentation;92
3.8.3;3 Device Characterization and Feasibility Study;95
3.8.3.1;3.1 Comparative Measurement of Object Temperature;95
3.8.3.2;3.2 Non-invasive Measurement of Skin Temperature;96
3.8.4;4 Results;96
3.8.4.1;4.1 Comparative Measurement of Object Temperature;96
3.8.4.2;4.2 Non-invasive Measurement of Skin Temperature;96
3.8.5;5 Discussion;97
3.8.6;6 Conclusion;98
3.8.7;References;99
3.9; T-Way Strategy for Sequence Input Interaction Test Case Generation Adopting Fish Swarm Algorithm;100
3.9.1;1 Introduction;100
3.9.2;2 Proposed T-Way Strategy Adopting Fish Swarm Algorithm;103
3.9.3;3 Results and Discussion;106
3.9.3.1;3.1 Comparison Results of TSFSSA Based on Experiment 1;110
3.9.3.2;3.2 Comparison Results of TSFSSA Based on Experiment 2;110
3.9.3.3;3.3 Comparison Results of TSFSSA Based on Experiment 3;110
3.9.4;4 Conclusion and Future Work;111
3.9.5;References;111
3.10; Development of AC and DC Drive Coils for a Small Volume Magnetic Particle Imaging System;113
3.10.1;1 Introduction;113
3.10.2;2 Methodology;115
3.10.2.1;2.1 Development of AC Drive Coil;115
3.10.2.2;2.2 Resonant Circuit for AC Drive Coil;116
3.10.2.3;2.3 DC Excitation Unit and Passive Butterworth Filter;117
3.10.2.4;2.4 Experimental Setup;118
3.10.3;3 Result and Discussions;119
3.10.3.1;3.1 Resonance Frequency of AC Excitation Coil;119
3.10.3.2;3.2 Field Free Line and DC Excitation Field;120
3.10.4;4 Conclusion;122
3.10.5;References;122
3.11; A Diversity-Based Adaptive Synchronous-Asynchronous Switching Simulated Kalman Filter Optimizer;124
3.11.1;1 Introduction;124
3.11.2;2 The Simulated Kalman Filter;126
3.11.3;3 The Proposed Diversity-Based Adaptive Synchronous-Asynchronous Switching SKF (DASAS-SKF);127
3.11.4;4 Experiment Result and Discussion;129
3.11.5;5 Conclusion;134
3.11.6;References;135
3.12; Combinatorial Test Suite Generation Strategy Using Enhanced Sine Cosine Algorithm;138
3.12.1;1 Introduction;138
3.12.2;2 Overview of T-Way Testing;139
3.12.3;3 Related Works;141
3.12.4;4 Original Sine Cosine Algorithm and Its Enhancement;142
3.12.5;5 Experimental Results and Conclusion;144
3.12.6;References;146
3.13; Classification of Lubricant Oil Geometrical Odor-Profile Using Cased-Based Reasoning;149
3.13.1;1 Introduction;150
3.13.2;2 Methodology;150
3.13.2.1;2.1 Data Measurement;151
3.13.2.2;2.2 Data Pre-Processing;152
3.13.2.3;2.3 Feature Extraction;152
3.13.2.4;2.4 Intelligent Classification;153
3.13.2.5;2.5 Performance Measure;154
3.13.3;3 Result and Discussion;155
3.13.3.1;3.1 Data Normalization and Odor-Pattern Establishment Process;155
3.13.3.2;3.2 CBR Performance Measure;157
3.13.4;4 Conclusion;160
3.13.5;References;160
3.14; Optimization of Quaternion Based on Hybrid PID and P? Control;162
3.14.1;1 Introduction;162
3.14.2;2 Quaternion Math;163
3.14.3;3 Quaternion Based Quadrotor Modelling;166
3.14.4;4 Controller Synthesis;167
3.14.5;5 Genetic Algorithm;168
3.14.6;6 Result and Discussion;169
3.14.7;7 Conclusion;172
3.14.8;References;173
3.15; Elimination-Dispersal Sine Cosine Algorithm for a Dynamic Modelling of a Twin Rotor System;175
3.15.1;1 Introduction;175
3.15.2;2 Elimination-Dispersal Sine Cosine Algorithm;177
3.15.3;3 Benchmark Functions Test;178
3.15.4;4 Twin Rotor System;179
3.15.5;5 Parametric Modelling of a Twin Rotor System;179
3.15.6;6 Result and Discussion;181
3.15.6.1;6.1 Result of the Benchmark Functions Test;181
3.15.6.2;6.2 Result of the Parametric Modelling;183
3.15.7;7 Conclusion;185
3.15.8;References;185
3.16; The Investigation of Meat Classification Based on Significant Authentication Features Using Odor-Profile Intelligent Signal Processing Approach;187
3.16.1;1 Introduction;188
3.16.2;2 Methodology;189
3.16.2.1;2.1 Sample Preparation;189
3.16.2.2;2.2 Experimental Setup;190
3.16.2.3;2.3 Data Measurement;191
3.16.2.4;2.4 Data Pre-processing;191
3.16.2.5;2.5 Feature Extraction;191
3.16.2.6;2.6 CBR Classification;192
3.16.2.7;2.7 Performance Measure;192
3.16.3;3 Results and Discussion;193
3.16.3.1;3.1 Feature Extraction;193
3.16.3.2;3.2 CBR Classification;194
3.16.3.3;3.3 Performance Measure;197
3.16.4;4 Conclusion;198
3.16.5;References;198
3.17; The Study of Raw Water Based on Quality Parameter Using Smell-Print Sensing Device;200
3.17.1;1 Introduction;200
3.17.2;2 Methodology;202
3.17.2.1;2.1 Raw Water Sampling and Preparation;202
3.17.2.2;2.2 Data Pre-processing;203
3.17.2.3;2.3 Features Extraction;203
3.17.2.4;2.4 CBR Classification;203
3.17.2.5;2.5 Performance Measure;204
3.17.3;3 Result and Discussion;204
3.17.3.1;3.1 Data Measurement;204
3.17.3.2;3.2 Data Pre-processing;204
3.17.3.3;3.3 Features Extraction;205
3.17.3.4;3.4 Performance Measure;206
3.17.4;4 Conclusion;209
3.17.5;References;209
3.18; Camera Orientation Determination Based on Copper Wire Spool Shape;211
3.18.1;1 Introduction;212
3.18.2;2 Theoretical Background;213
3.18.3;3 Proposed Algorithm;214
3.18.3.1;3.1 Copper Wire Spool Detection;215
3.18.3.2;3.2 Camera and Spool Alignment;215
3.18.4;4 Experimental Results and Discussion;217
3.18.5;5 Conclusion;221
3.18.6;References;223
3.19; A Modified Symbiotic Organism Search Algorithm with Lévy Flight for Software Module Clustering Problem;225
3.19.1;1 Introduction;225
3.19.2;2 The Problem of Software Module Clustering;227
3.19.3;3 Symbiotic Organism Search and Its Modification;227
3.19.4;4 Benchmarking Case Studies;230
3.19.5;5 Discussion;232
3.19.6;6 Conclusion;233
3.19.7;References;233
3.20; Classification of Agarwood Types (Malaccensis and Crassna) Between Oil and Smoke Using E-Nose with CBR Classifier;236
3.20.1;1 Introduction;236
3.20.2;2 Methodology;238
3.20.2.1;2.1 Data Measurement;239
3.20.2.2;2.2 Data Pre-Processing;240
3.20.2.3;2.3 Features Extraction;240
3.20.2.4;2.4 CBR Classification;240
3.20.2.5;2.5 Performance Measurement;241
3.20.3;3 Results and Discussion;241
3.20.4;4 Conclusion;246
3.20.5;References;247
4; Applied Electronics and Computer Engineering;249
4.1; SCAR-CNN: Secondary-Classification-After-Refinement Convolutional Neural Network for Fine-Grained Categorization;250
4.1.1;1 Introduction;250
4.1.2;2 Related Work;251
4.1.3;3 Methodology;253
4.1.3.1;3.1 Datasets;253
4.1.3.2;3.2 Part Localization;254
4.1.3.3;3.3 Primary Classification;255
4.1.3.4;3.4 Secondary Classification;256
4.1.4;4 Experiments;257
4.1.4.1;4.1 Image Up-Scaling Method;257
4.1.4.2;4.2 First Classification Scenario;258
4.1.4.3;4.3 Second Classification Scenario;259
4.1.4.4;4.4 Overall Result;260
4.1.5;5 Conclusion;260
4.1.6;References;261
4.2; Forecasting Road Deaths in Malaysia Using Support Vector Machine;264
4.2.1;1 Introduction;265
4.2.2;2 Methodology;266
4.2.2.1;2.1 Datasets;267
4.2.2.2;2.2 SVM Model Development;267
4.2.3;3 Results and Discussion;268
4.2.4;4 Conclusion;269
4.2.5;References;270
4.3; Investigation of Dimensionality Reduction on Numerical Attribute Features in a Finger Vein Identification System;271
4.3.1;1 Introduction;271
4.3.2;2 Related Work;272
4.3.3;3 Propose Method;273
4.3.3.1;3.1 Finger Vein Database;273
4.3.3.2;3.2 Image Processing;274
4.3.3.3;3.3 Feature Extraction;274
4.3.3.4;3.4 Principal Components Analysis (PCA) Dimensionality Reduction;278
4.3.3.5;3.5 Support Vector Machine (SVM);278
4.3.4;4 Experimental Results and Discussion;280
4.3.5;5 Conclusion;283
4.3.6;References;283
4.4; Intelligent Gender Recognition System for Classification of Gender in Malaysian Demographic;285
4.4.1;1 Introduction;285
4.4.2;2 Related Works;286
4.4.3;3 Method;287
4.4.3.1;3.1 System Architecture;288
4.4.3.2;3.2 Convolutional Neural Network Technique;289
4.4.4;4 Results and Discussion;292
4.4.4.1;4.1 Prototype Operation;292
4.4.4.2;4.2 Performance in Malaysian Demographic;293
4.4.5;5 Conclusion;296
4.4.6;References;297
4.5; A Novel Approach Towards Tamper Detection of Digital Holy Quran Generation;298
4.5.1;1 Introduction;298
4.5.2;2 Related Works;300
4.5.3;3 Methodology;301
4.5.3.1;3.1 System Design;301
4.5.3.2;3.2 Jaro-Winkler Similarity;303
4.5.3.3;3.3 Performance Measure Parameters;303
4.5.4;4 Implementation Details;304
4.5.5;5 Experimental Results and Analysis;304
4.5.6;6 Conclusion;308
4.5.7;References;308
4.6; A Comparative Study of AFM-Assisted Direct and Least-Square Attitude Determination Algorithm;310
4.6.1;1 Introduction;311
4.6.2;2 Ambiguity Resolution;311
4.6.2.1;2.1 Ambiguity Function Method (AFM);311
4.6.2.2;2.2 New Method Based on AFM;313
4.6.3;3 Attitude Determination;314
4.6.3.1;3.1 DAD Method (Direct Attitude Determination);314
4.6.3.2;3.2 LSAD Method (Least Square Attitude Determination;317
4.6.4;4 Verification and Analysis;318
4.6.4.1;4.1 Two Antenna Experiment;318
4.6.4.2;4.2 Three Antenna Experiments;318
4.6.5;5 Conclusions;321
4.6.6;References;321
4.7; Design and Development of Wearable Human Activity Recognition for Healthcare Monitoring;323
4.7.1;1 Introduction;323
4.7.2;2 System Modelling and Design;325
4.7.3;3 Results and Discussions;327
4.7.4;4 Conclusion;331
4.7.5;References;331
4.8; Region of Interest Extraction of Finger-Vein Image Using Watershed Segmentation with Distance Transform;333
4.8.1;1 Introduction;333
4.8.2;2 Proposed ROI Extraction Method;335
4.8.2.1;2.1 Finger Vein Image Segmentation and Edge Detection;336
4.8.2.2;2.2 Finger Vein Image Orientation Correction;336
4.8.2.3;2.3 ROI Extraction;338
4.8.3;3 Results and Discussions;340
4.8.3.1;3.1 Comparison of the Proposed and Previously Proposed Finger Edge Detection Methods;340
4.8.3.2;3.2 Comparison of Various ROI Extraction Methods;342
4.8.4;4 Conclusion;344
4.8.5;References;344
4.9; The Classification of Skateboarding Trick Manoeuvres Through the Integration of Image Processing Techniques and Machine Learning;346
4.9.1;1 Introduction;347
4.9.2;2 Methodology;348
4.9.2.1;2.1 Experimental Setup;348
4.9.2.2;2.2 Data Collection;348
4.9.2.3;2.3 Image Processing;348
4.9.2.4;2.4 Machine Learning;350
4.9.3;3 Results and Discussion;353
4.9.4;4 Conclusion;354
4.9.5;References;355
4.10; Review and Analysis of Risk Factor of Maternal Health in Remote Area Using the Internet of Things (IoT);356
4.10.1;1 Introduction;356
4.10.2;2 Analysis of Risk Factor during Pregnancy;357
4.10.2.1;2.1 Literature Search and Selecting Risk Factors Intensity;357
4.10.2.2;2.2 Analyzing the Common Risk Parameters from an Existing Diabetes Dataset for Women;359
4.10.2.3;2.3 Analyzing Sample Real Data to Explore the Status of Accuracy;360
4.10.3;3 The Experimental Result Over Pima-Indians-Diabetes Data Set;360
4.10.3.1;3.1 Classification Accuracy;360
4.10.3.2;3.2 Making Prediction;361
4.10.4;4 Proposed System Model;362
4.10.4.1;4.1 Integrated Model;362
4.10.4.2;4.2 Model of IoT Device;362
4.10.5;5 Conclusion;363
4.10.6;References;363
4.11; Recent Trends and Open Challenges in EEG Based Brain-Computer Interface Systems;365
4.11.1;1 Introduction;366
4.11.2;2 Recent Advancements in BCI System;366
4.11.2.1;2.1 Data Acquisition for BCI;366
4.11.2.2;2.2 EEG Modalities Used in BCI;367
4.11.2.3;2.3 Data Pre-Processing;368
4.11.2.4;2.4 Feature Extraction and Classification;368
4.11.2.5;2.5 EEG Based BCI Technologies;369
4.11.3;3 Challenges in BCI System with Possible Solutions;369
4.11.3.1;3.1 Absence of Standard Data Acquisition Protocol;372
4.11.3.2;3.2 Low ITR of BCI System;372
4.11.3.3;3.3 Lack of Autonomous Operation of BCI System/Expert Dependency of BCI System;373
4.11.3.4;3.4 Dissimilar Performance Evaluation Metric of BCI System;373
4.11.4;4 Conclusions;373
4.11.5;References;374
4.12; Early Rubeosis Iridis Detection Using Feature Extraction Process;377
4.12.1;1 Introduction;377
4.12.2;2 Research Background;378
4.12.3;3 Methodology;380
4.12.4;4 Result and Discussion;382
4.12.5;5 Conclusion;383
4.12.6;References;385
4.13; Multi-hop File Transfer in WiFi Direct Based Cognitive Radio Network for Cloud Back-Up;386
4.13.1;1 Introduction;387
4.13.2;2 The System Model;388
4.13.2.1;2.1 Routing Protocol Selection;388
4.13.2.2;2.2 Cognitive Radio Network (CRN) Activity Implementation;388
4.13.2.3;2.3 WiFi Direct Based Multi-hop Data Transfer and Cloud Synchronization;390
4.13.2.4;2.4 System Implementation;390
4.13.3;3 Performance Analysis;390
4.13.4;4 Conclusion and Future Works;395
4.13.5;References;396
4.14; The Multifocus Images Fusion Based on a Generative Gradient Map;398
4.14.1;1 Introduction;399
4.14.2;2 Methodology;400
4.14.2.1;2.1 Multifocus Images Fusion;401
4.14.2.2;2.2 Multifocus Images Fusion with Generative Gradient Map;402
4.14.2.3;2.3 The Generative Gradient Map;404
4.14.2.4;2.4 Morphology Filtering;405
4.14.2.5;2.5 Guided Image Filter;406
4.14.3;3 Test and Results;406
4.14.4;4 Conclusions and Future Work;409
4.14.5;References;409
4.15; A Comparative Analysis of Four Classification Algorithms for University Students Performance Detection;411
4.15.1;1 Introduction;412
4.15.2;2 Literature Review;412
4.15.3;3 Methodology;414
4.15.3.1;3.1 Data Collection;414
4.15.3.2;3.2 Null Data Reduction;416
4.15.3.3;3.3 Label Encoding;416
4.15.3.4;3.4 Feature Selection;417
4.15.4;4 Results and Discussions;418
4.15.5;5 Conclusions and Future Directions;419
4.15.6;References;420
4.16; Open-Set Face Recognition in Video Surveillance: A Survey;421
4.16.1;1 Introduction;421
4.16.2;2 Closed-Set Versus Open-Set Face Recognition;422
4.16.3;3 Literature Review;424
4.16.3.1;3.1 One-Class Classification Based Approaches;424
4.16.3.2;3.2 Two-Class Classification Based Approaches;425
4.16.3.3;3.3 Multi-class Classification Based Approaches;426
4.16.4;4 Current Problems and Future Research;427
4.16.5;5 Performance Evaluation;428
4.16.6;6 Face Video Surveillance Databases;429
4.16.7;7 Conclusion;430
4.16.8;References;430
4.17; Hardware Development of Auto Focus Microscope;433
4.17.1;1 Introduction;434
4.17.2;2 Methods;435
4.17.2.1;2.1 Hardware Design;436
4.17.2.2;2.2 Circuit Interfacing;437
4.17.2.3;2.3 System Workflow;438
4.17.3;3 Results and Discussions;440
4.17.3.1;3.1 Fine and Corse Knob;440
4.17.3.2;3.2 Sputum Image Analysis;443
4.17.4;4 Conclusion and Future Works;444
4.17.5;References;445
4.18; Overview on Fingerprinting Authentication Technology;446
4.18.1;1 Introduction;446
4.18.2;2 Fingerprint Characteristics;447
4.18.2.1;2.1 Identification;447
4.18.2.2;2.2 Permanence;447
4.18.3;3 Authentication System;448
4.18.3.1;3.1 Data Acquisition;449
4.18.3.2;3.2 Feature Extraction;450
4.18.3.3;3.3 Matching;452
4.18.4;4 System Security;453
4.18.5;5 Future Technology;454
4.18.6;6 Conclusion;456
4.18.7;References;456
4.19; Bandwidth and Gain Enhancement of a Modified Ultra-wideband (UWB) Micro-strip Patch Antenna Using a Reflecting Layer;458
4.19.1;1 Introduction;459
4.19.2;2 Antenna Design;460
4.19.2.1;2.1 Calculation of the Associated Parameters;460
4.19.2.2;2.2 Reflecting Layer (A Second Layer of Antenna) Design;463
4.19.3;3 Results and Discussions;463
4.19.4;4 Conclusion;466
4.19.5;References;467
4.20; Oil Palm Tree Detection and Counting in Aerial Images Based on Faster R-CNN;469
4.20.1;1 Introduction;469
4.20.2;2 Methodology;471
4.20.3;3 Experiments;473
4.20.3.1;3.1 Experimental Set-Up;473
4.20.3.2;3.2 Results and Discussion;473
4.20.4;4 Conclusions;475
4.20.5;References;476
4.21; EEG Pattern of Cognitive Activities for Non Dyslexia (Engineering Student) due to Different Gender;477
4.21.1;1 Introduction;478
4.21.2;2 Methodology;479
4.21.2.1;2.1 Subjects;479
4.21.2.2;2.2 Data Collection;480
4.21.2.3;2.3 Analysis of Data;481
4.21.3;3 Results and Discussions;481
4.21.3.1;3.1 Distribution Results;481
4.21.3.2;3.2 Results of Average;483
4.21.3.3;3.3 Correlation;485
4.21.4;4 Conclusion;485
4.21.5;References;486
4.22; Intelligent Autism Screening Using Fuzzy Agent;488
4.22.1;1 Introduction;488
4.22.2;2 Related Works;489
4.22.3;3 Methodology;490
4.22.3.1;3.1 Overview of Fuzzy Agents;490
4.22.3.2;3.2 The Working Mechanism of Fuzzy Agent for Autism Screening;491
4.22.4;4 Results and Discussion;493
4.22.5;5 Conclusions;495
4.22.6;References;495
4.23; Ultra Wide Band (UWB) Based Early Breast Cancer Detection Using Artificial Intelligence;497
4.23.1;1 Introduction;498
4.23.2;2 Methodology;499
4.23.2.1;2.1 The Experimental Set Up and Data Collection;500
4.23.2.2;2.2 Feature Extraction;502
4.23.2.3;2.3 Artificial Neural Network (ANN);502
4.23.3;3 Result and Discussion;503
4.23.4;4 Conclusion;505
4.23.5;References;506
4.24; Design and Analysis of Circular Shaped Patch Antenna with Slot for UHF RFID Reader;508
4.24.1;1 Introduction;508
4.24.2;2 Antenna Geometry and Design;510
4.24.3;3 Results and Discussions;512
4.24.3.1;3.1 Result of Simulation of the Proposed Antenna;512
4.24.3.2;3.2 Parametric Studies;514
4.24.4;4 Conclusion;516
4.24.5;References;517
4.25; Analysis of EEG Features for Brain Computer Interface Application;519
4.25.1;1 Introduction;519
4.25.2;2 Methodology;520
4.25.2.1;2.1 EEG Measurement and Protocol;521
4.25.2.2;2.2 Preprocessing and Feature Extraction;521
4.25.3;3 Result and Discussion;524
4.25.3.1;3.1 EEG Raw Data;524
4.25.3.2;3.2 Filtered EEG Data;524
4.25.3.3;3.3 Average Power Spectral Density;526
4.25.3.4;3.4 Average Spectral Centroid;526
4.25.3.5;3.5 Average Log Energy Entropy;527
4.25.4;4 Conclusion;529
4.25.5;References;529
4.26; Hybrid Sampling and Random Forest Based Machine Learning Approach for Software Defect Prediction;531
4.26.1;1 Introduction;532
4.26.2;2 Related Works;532
4.26.3;3 Data Pre-processing;533
4.26.3.1;3.1 Removing Highly Correlated Features;533
4.26.3.2;3.2 Feature Scaling;533
4.26.3.3;3.3 Feature Selection;534
4.26.3.4;3.4 Algorithms for Random Forest Importance and Chi-Square;535
4.26.4;4 Proposed Methodology;536
4.26.4.1;4.1 Imbalanced Dataset;537
4.26.5;5 Experiment Results;537
4.26.5.1;5.1 Evaluation Matrices;537
4.26.5.2;5.2 Results and Analysis;538
4.26.5.3;5.3 Results Discussion;542
4.26.6;6 Conclusion;542
4.26.7;References;543
4.27; kNN and SVM Classification for EEG: A Review;544
4.27.1;1 Introduction;544
4.27.2;2 EEG Signal Processing Architecture;546
4.27.3;3 Previous Studies;547
4.27.3.1;3.1 k-Nearest Neighbour;547
4.27.3.2;3.2 Support Vector Machine;548
4.27.3.3;3.3 Comparison Studies;550
4.27.4;4 Discussion;551
4.27.5;5 Conclusion;552
4.27.6;References;552
4.28; Flexible Graphene-Silver Nanowires Polydimethylsiloxane (PDMS) Directional Coupler;555
4.28.1;1 Introduction;555
4.28.2;2 Experimental Method;556
4.28.2.1;2.1 Graphene–Silver Nanowires Dispersion;556
4.28.2.2;2.2 PDMS Substrate;557
4.28.2.3;2.3 Directional Coupler Design;557
4.28.2.4;2.4 Four-Point Probe Technique;558
4.28.3;3 Results and Discussion;559
4.28.4;4 Conclusion;562
4.28.5;References;564
4.29; Investigating the Possibility of Brain Actuated Mobile Robot Through Single-Channel EEG Headset;566
4.29.1;1 Introduction;566
4.29.2;2 Methodology;568
4.29.2.1;2.1 Data Acquisition Protocol;568
4.29.2.2;2.2 Feature Extraction and Classification;571
4.29.2.3;2.3 Translational Algorithm and Device Command;572
4.29.2.4;2.4 Hardware Setup;573
4.29.3;3 Result and Discussion;573
4.29.4;4 Conclusion;576
4.29.5;References;576
4.30; Campus Hybrid Intrusion Detection System Using SNORT and C4.5 Algorithm;578
4.30.1;1 Introduction;579
4.30.2;2 Related Works;579
4.30.3;3 Hybrid Intrusion Detection System;580
4.30.3.1;3.1 Component of Hybrid Intrusion Detection System;580
4.30.3.2;3.2 Intrusion Detection System (IDS);581
4.30.4;4 Research Methods;581
4.30.4.1;4.1 Stage of Analysis;581
4.30.4.2;4.2 Stage of Design;582
4.30.4.3;4.3 Stage of Implementation;583
4.30.4.4;4.4 Stage of Enforcement;586
4.30.4.5;4.5 Stage of Enhancement;589
4.30.5;5 Conclusions and Recommendations;589
4.30.6;References;590
4.31; Image Segmentation of Women’s Salivary Ferning Patterns Using Harmony Frangi Filter;591
4.31.1;1 Introduction;591
4.31.2;2 Research Method;593
4.31.2.1;2.1 Hessian Matrix as Edge Detection Method;594
4.31.2.2;2.2 Harmony Frangi Filter;597
4.31.2.3;2.3 Block Diagram;598
4.31.3;3 Results and Analysis;599
4.31.3.1;3.1 Stages of the Image Segmentation Process;599
4.31.3.2;3.2 Measurement of Segmentation;605
4.31.4;4 Conclusion;606
4.31.5;References;608
4.32; Autonomous Self-exam Monitoring for Early Diabetes Detection;609
4.32.1;1 Introduction;609
4.32.2;2 Research Background;610
4.32.3;3 Methodology;612
4.32.3.1;3.1 Data Collection;612
4.32.3.2;3.2 Segmentation;613
4.32.3.3;3.3 Threshold;615
4.32.3.4;3.4 Feature Extraction;615
4.32.3.5;3.5 Classification;615
4.32.4;4 Result and Discussion;616
4.32.5;5 Conclusion;617
4.32.6;References;618
4.33; Quantitative Assessment of Remote Code Execution Vulnerability in Web Apps;619
4.33.1;1 Introduction;620
4.33.2;2 Literature Review;620
4.33.3;3 RCE Exploitation Process;621
4.33.4;4 Methodology;622
4.33.4.1;4.1 Data Collection;622
4.33.4.2;4.2 Pre-Processing Phase;623
4.33.5;5 Results;623
4.33.6;6 Discussions;626
4.33.7;7 Conclusion;627
4.33.8;References;627
5; Sustainable Energy and Power Engineering;629
5.1; A Salp Swarm Algorithm to Improve Power Production of Wind Plant;630
5.1.1;1 Introduction;630
5.1.2;2 Problem Framework;631
5.1.2.1;2.1 Salp Swarm Algorithm (SSA) Mathematical Model;632
5.1.2.2;2.2 SSA Approach to Increase Wind Plant Power Production;633
5.1.3;3 Results and Discussion;633
5.1.3.1;3.1 Wind Plant Dynamic Model;634
5.1.3.2;3.2 Example of a Singular Row Wind Plant Consisting of 10 Turbines;635
5.1.4;4 Conclusions;637
5.1.5;References;638
5.2; Improvement of Performance and Response Time of Cascaded Five-Level VSC STATCOM Using ANN Controller and SVPWM During Period of Voltage Sag;640
5.2.1;1 Introduction;641
5.2.2;2 Proposed STATCOM;642
5.2.2.1;2.1 Cascaded 5-Level VSC;643
5.2.2.2;2.2 SVPWM Circuit Scheme;644
5.2.2.3;2.3 Control Circuit of STATCOM;645
5.2.2.4;2.4 ANN Controller;646
5.2.3;3 Simulation Results;647
5.2.3.1;3.1 Case A: Voltage Sag Engendered by SLG Fault;647
5.2.3.2;3.2 Case B: Voltage Sag Engendered by LL Fault;650
5.2.4;4 Conclusion;650
5.2.5;References;652
5.3; Development of Maximum Power Point Tracking for Doubly-Fed Induction Generators in Wind Energy Conversion Systems;654
5.3.1;1 Introduction;655
5.3.2;2 MPPT in DFIG-WECS;656
5.3.3;3 CS Algorithm Based MPPT in DFIG-WECS;657
5.3.4;4 Numerical Result;658
5.3.5;5 Conclusion;663
5.3.6;References;663
5.4; Development of PV Module Power Degradation Analyzer;665
5.4.1;1 Introduction;665
5.4.2;2 Literature Review;666
5.4.2.1;2.1 PV Module’s Parameters;666
5.4.2.2;2.2 Recent Studies;667
5.4.3;3 Methodology;668
5.4.3.1;3.1 Overview;668
5.4.3.2;3.2 System Design;668
5.4.4;4 Result and Discussion;670
5.4.4.1;4.1 Comparison with I–V Tracer;670
5.4.4.2;4.2 Degradation Calculation;671
5.4.5;5 Conclusion;672
5.4.6;References;673
5.5; Direct Power Control Method of Maximum Power Point Tracking (MPPT) Algorithm for Pico-Hydrokinetic River Energy Conversion System;675
5.5.1;1 Introduction;675
5.5.2;2 Pico-Hydrokinetic System Configuration;677
5.5.2.1;2.1 Turbine Model;677
5.5.2.2;2.2 Analysis of PMSG and Rectifier;679
5.5.2.3;2.3 Design of DC Boost Converter;680
5.5.3;3 MPPT Control Algorithm;681
5.5.3.1;3.1 Hill-Climbing Search Algorithm;681
5.5.3.2;3.2 Proposes Modify Hill-Climbing Search with PI Current Controller;682
5.5.4;4 Results and Discussion;684
5.5.5;5 Conclusion;685
5.5.6;References;686
5.6; Load Estimation of Single-Phase Diode Bridge Rectifier Using Kalman Filter;688
5.6.1;1 Introduction;688
5.6.2;2 Kalman Filter Method-Based on RC Estimation;689
5.6.2.1;2.1 Kalman Filter;691
5.6.3;3 Theoretical Analysis;692
5.6.4;4 Simulation Results and Analysis;693
5.6.5;5 Conclusion;698
5.6.6;References;698
5.7; A Study on Residual Current Device Nuisance Tripping Due to Grounding Resistance Value;700
5.7.1;1 Introduction;700
5.7.2;2 Experiment Arrangement;701
5.7.3;3 RCD Performance Due to Grounding Resistance Value;702
5.7.3.1;3.1 Effect of Grounding Resistance;702
5.7.3.2;3.2 Effect of Load and Grounding Resistance Value;704
5.7.4;4 Conclusion;705
5.7.5;References;706
5.8; DC-Link Protection for Grid-Connected Photovoltaic System: A Review;707
5.8.1;1 Introduction;707
5.8.2;2 Photovoltaic (PV) System;708
5.8.3;3 Impacts of Grid Faults on Grid-Connected PV System;708
5.8.4;4 Conventional Protection Schemes of Grid-Connected PV System;710
5.8.5;5 Proposed New Protection Scheme (Zero State Protection Scheme);715
5.8.6;6 Conclusion;717
5.8.7;References;717
5.9; An Improved Efficiency of Solar Photo Voltaic System Applications by Using DC-DC Zeta Converter;719
5.9.1;1 Introduction;719
5.9.2;2 Detailed Arrangement of Projected System;721
5.9.2.1;2.1 SPV Based Zeta Converter Control;721
5.9.2.2;2.2 Scheme of Projected System;722
5.9.3;3 Control of Projected System;725
5.9.3.1;3.1 INC-MPPT Algorithm;725
5.9.3.2;3.2 BLDC Motor Under Electronic Commutation;726
5.9.4;4 BLDC Speed Controller Method;726
5.9.4.1;4.1 Control Speed of BLDC Motor;728
5.9.5;5 MATLAB/Simulation Results;728
5.9.6;6 Conclusion;730
5.9.7;References;733
5.10; Hydrophobic Sol-Gel Based Self-cleaning Coating for Photovoltaic Panels;734
5.10.1;1 Introduction;735
5.10.2;2 Experimental Details;735
5.10.2.1;2.1 Materials;735
5.10.2.2;2.2 Fabrication of VTT Sol-Gel Based Coating;736
5.10.2.3;2.3 Characterization;737
5.10.3;3 Results and Discussions;739
5.10.3.1;3.1 Experimental Preparation of VTT Sol;739
5.10.3.2;3.2 Heat Treatment of the Coating;740
5.10.3.3;3.3 Transmittance and Transparency;740
5.10.4;4 Conclusions;744
5.10.5;References;745
5.11; Effect of Graphene Oxide Nanoparticles on Thermal Properties of Paraffin Wax;747
5.11.1;1 Introduction;748
5.11.2;2 Methods;749
5.11.2.1;2.1 Fabrication of Nano-enhanced PCM;749
5.11.2.2;2.2 Analysis Methods;749
5.11.2.3;2.3 Theoretical;751
5.11.3;3 Results and Discussion;752
5.11.3.1;3.1 Melting and Solidifying Time;752
5.11.3.2;3.2 Temperature of Melting Process;753
5.11.3.3;3.3 Differential Scanning Calorimetry Curve;756
5.11.3.4;3.4 Total Heat Stored;759
5.11.4;4 Conclusion;760
5.11.5;References;760
5.12; Reliability Performance of Low Voltage (LV) Network Configuration;762
5.12.1;1 Introduction;762
5.12.2;2 Reliability Input;764
5.12.2.1;2.1 LV Distribution Network;764
5.12.2.2;2.2 Mean Fault Rates and Repair Times;765
5.12.3;3 Reliability Assessment;767
5.12.3.1;3.1 Reliability Method;767
5.12.3.2;3.2 Reliability Indices;769
5.12.4;4 Result;769
5.12.5;5 Discussion;770
5.12.6;6 Conclusion;771
5.12.7;References;771
5.13; Detailed Non-Linear Constrained Multi-Objective Optimal Operation of Power Systems Including Renewable Energy Sources;773
5.13.1;1 Introduction;773
5.13.2;2 Renewable Power Sources;774
5.13.2.1;2.1 Solar Power;774
5.13.2.2;2.2 Wind Power;775
5.13.3;3 Optimal Operation of Integrated Power Systems;775
5.13.3.1;3.1 Objective Function;776
5.13.3.2;3.2 Constraint Condition;777
5.13.4;4 Optimal Operation of an Integrated Power System Using a MCS Algorithm;778
5.13.4.1;4.1 CS Algorithm;779
5.13.4.2;4.2 MCS Algorithm;779
5.13.5;5 Numerical Results;780
5.13.6;6 Conclusion;785
5.13.7;References;786
5.14; Voltage Sag Immunity Testing for AC Contactors in Industrial Environment;787
5.14.1;1 Introduction;787
5.14.1.1;1.1 Voltage Sag;787
5.14.1.2;1.2 AC Contactors;789
5.14.2;2 Previous Research;790
5.14.2.1;2.1 Laboratory Testing;790
5.14.3;3 Methodology;792
5.14.3.1;3.1 Selection of AC Contactors;792
5.14.3.2;3.2 Practical Test Setup;793
5.14.3.3;3.3 Test Procedure;793
5.14.3.4;3.4 Selection of Variables;794
5.14.4;4 Result and Analysis;794
5.14.4.1;4.1 New and Ageing Contactor;794
5.14.5;5 Conclusion;797
5.14.6;References;798
5.15; Vertical Axis Wind Turbines: An Overview;799
5.15.1;1 Introduction;799
5.15.2;2 Wind Energy;800
5.15.2.1;2.1 Wind Power;800
5.15.2.2;2.2 Global Expansion of Wind Energy Generation;801
5.15.2.3;2.3 Implementation of Wind Energy Generation in Malaysia;801
5.15.3;3 Wind Turbine Classification;802
5.15.3.1;3.1 Horizontal Axis Wind Turbine (HAWT);802
5.15.3.2;3.2 Vertical Axis Wind Turbine (VAWT);802
5.15.3.3;3.3 Savonius Type;804
5.15.3.4;3.4 Darrieus Type;805
5.15.3.5;3.5 Hybrid Savonius–Darrieus VAWT;808
5.15.4;4 Proposed Design Methodology for Hybrid VAWT;810
5.15.5;5 Future Development of VAWTs for Energy Generation;811
5.15.6;6 Conclusion;811
5.15.7;References;812
5.16; Hyperheuristics Trajectory Based Optimization for Energy Management Strategy (EMS) of Split Plug-In Hybrid Electric Vehicle;814
5.16.1;1 Introduction;814
5.16.2;2 HEV Free Model;815
5.16.3;3 Methodology;816
5.16.4;4 Result;819
5.16.5;5 Discussion;822
5.16.6;6 Conclusion;822
5.16.7;References;825
5.17; Utilization of Filter Harmonic Current Based on Shunt HPF Within the Acceptable IEEE-519 Standard;826
5.17.1;1 Introduction;826
5.17.2;2 System Description;827
5.17.2.1;2.1 Simulation Results and Discussion;829
5.17.3;3 Conclusion;834
5.17.4;References;834
5.18; Vehicle-to-Grid as Frequency Regulator in a Micro Grid System;836
5.18.1;1 Introduction;836
5.18.2;2 Plug-in Hybrid Electric Vehicle Charging Load Profile (PHEVCLP);837
5.18.2.1;2.1 Vehicle Daily Mileage Analysis;838
5.18.2.2;2.2 Vehicle Arrival Time Analysis;839
5.18.2.3;2.3 PHEV Load Charging Profile;840
5.18.2.4;2.4 Model of Vehicle-to-Grid (V2G) System;842
5.18.3;3 Results and Discussion;843
5.18.3.1;3.1 Increases of Residential Load Due to the PHEV Charging;843
5.18.3.2;3.2 Different Charging Level and Its Impact on System Frequency;844
5.18.4;4 Conclusion;849
5.18.5;References;849
5.19; Development of PV Module Hotspot Detector;851
5.19.1;1 Introduction;851
5.19.2;2 Literature Review;852
5.19.3;3 Methodology;854
5.19.4;4 Results and Discussion;856
5.19.5;5 Conclusion;860
5.19.6;References;860
5.20; Comparative Analysis for LED Driver with Analog and Digital Controllers;861
5.20.1;1 Introduction;861
5.20.2;2 Modelling of the Controller;863
5.20.3;3 Parameter Calculations;863
5.20.4;4 Simulation;867
5.20.5;5 Conclusions;871
5.20.6;References;872
5.21; Characterization of Positive Porous Electrode Felt for Organic Redox Flow Battery Application;874
5.21.1;1 Introduction;874
5.21.2;2 Methodology;875
5.21.2.1;2.1 Material Preparation;875
5.21.2.2;2.2 Felt Preparation;876
5.21.2.3;2.3 Electrochemical Investigation;876
5.21.3;3 Result and Discussion;877
5.21.4;4 Conclusion;879
5.21.5;References;879



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.