E-Book, Englisch, 410 Seiten, Web PDF
Keeling / Benham Ion Transport
1. Auflage 2013
ISBN: 978-1-4832-6566-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 410 Seiten, Web PDF
ISBN: 978-1-4832-6566-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Ion Transport is a collection of papers from the Smith Kline & French Research 'Symposium on Ion Transport' held in Cambridge, on April 12-14, 1989. These papers focus on the plasma membrane, particularly on the three main classes of transporters, namely, pumps, exchangers, and channels. Some papers discuss the different experimental approaches from electrophysiological and ion flux measurements through pharmacology, molecular biology, electrostatics, and computer modeling. Other papers discuss the P-type cation pump, a class of ATP-driven ion pumps, which is determined from its subunit composition and from the results of the hydrolysis of ATP. Several papers explain the techniques used in ion channels and their modulation. These techniques can be used in the voltage-gated Na+ channel or in permeation mechanisms. Other papers examine the transport proteins involved in the physiology of ion transport. Ions and fluid transport relate to, at the molecular level, how ions cross membranes. A minimum model, in conjunction with theoretical perspective, can describe the mechanism by which ions move through channels. This collection can prove beneficial for biochemists, micro-biologists, cellular researchers, and academicians involved in the study of cellular biology or biophysics.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Ion Transport;4
3;Copyright Page;5
4;Table of Contents;12
5;Contributors;6
6;Foreword;10
7;Introduction;18
8;PART 1: P-type Cation Pumps;26
8.1;Chapter 1. Extracytosolic Functional Domains of the H+, K+-ATPase Complex;28
8.1.1;1 Introduction;28
8.1.2;2 Results;31
8.1.3;3 Discussion;40
8.1.4;Acknowledgements;43
8.1.5;References;44
8.2;Chapter 2. The Mechanism of Cation Transport by the Na+ ,K+-ATPase;46
8.2.1;1 Introduction;46
8.2.2;2 The transport mechanism;46
8.2.3;3 Cation occlusion;48
8.2.4;4 Cation selectivity;49
8.2.5;5 Trans effects of Na+;50
8.2.6;6 Cation slippage fluxes;51
8.2.7;7 Electrogenic potentials;52
8.2.8;8 Effects of voltage on the pump;53
8.2.9;9 The structure of the cation-binding sites;56
8.2.10;10 Future directions;57
8.2.11;Acknowledgements;58
8.2.12;References;58
8.3;Chapter 3 .The Nucleotide-binding Site of the Plasma-membrane H+-ATPase of Neurospora crassa: A Comparison with other P-type ATPases;62
8.3.1;1 Introduction;62
8.3.2;2 Nucleotide binding;64
8.3.3;3 Sequence comparisons;66
8.3.4;4 Structure of the nucleotide-binding site;74
8.3.5;Acknowledgements;77
8.3.6;References;77
9;PART 2: Ion Channels and their Modulation;82
9.1;Chapter 4. Voltage-gated Sodium Channels since 1952;84
9.1.1;1 Introduction;84
9.1.2;2 Distribution;84
9.1.3;3 Molecular Structure;86
9.1.4;4 Gating;87
9.1.5;5 Selectivity filter and pore;90
9.1.6;6 Modulated receptors;91
9.1.7;7 Conclusion;95
9.1.8;Acknowledgements;96
9.1.9;References;96
9.2;Chapter 5. Single Potassium Channels in Drosophila Nerve and Muscle;100
9.2.1;1 Introduction;100
9.2.2;2 Advantages of Drosophila as a system for the study of ion channels;100
9.2.3;3 Tissue culture systems;102
9.2.4;4 A1 channels
;104
9.2.5;5 A2 channels;105
9.2.6;6 KD channels;106
9.2.7;7 K1 channels
;107
9.2.8;8 Ko channels
;108
9.2.9;9 KST channel;108
9.2.10;10 Shaker differential splicing does not explain the diversity of channel types;109
9.2.11;Acknowledgement;110
9.2.12;References;111
9.3;Chapter 6. Calcium Channels: Properties and Modulation;114
9.3.1;1 Introduction;114
9.3.2;2 Ca2+ channel selectivity;115
9.3.3;3 Ca2+ channel gating;115
9.3.4;4 Ca2+ channel modulation;117
9.3.5;Acknowledgements;121
9.3.6;References;121
9.4;Chapter 7. Calcium Channels in Mammalian Sympathetic Neurons and PC12 Cells;124
9.4.1;1 Introduction;124
9.4.2;2 Results and discussion;125
9.4.3;Acknowledgements;140
9.4.4;References;141
9.5;Chapter 8. Voltage-dependent Calcium Channels of Smooth Muscle Cells;144
9.5.1;1 Introduction;144
9.5.2;2 Inward current;145
9.5.3;3 Conclusions;150
9.5.4;Acknowledgements;151
9.5.5;References;151
9.6;Chapter 9. Modulation of Calcium and other Channels by G Proteins: Implications for the Control of Synaptic Transmission;154
9.6.1;1 Introduction;154
9.6.2;2 Modulation of Ca2+ channels by G protein activation;155
9.6.3;3 Evidence for G proteins coupling to K+ channels;165
9.6.4;4 Role of G protein-coupled ion channels in the modulation of synaptic transmission;167
9.6.5;5 Conclusion;168
9.6.6;References;169
9.7;Chapter 10. The Structure of the Skeletal Muscle Calcium Channel;174
9.7.1;1 Introduction;174
9.7.2;2 Structural composition of the purified skeletal muscle Ca2+ channel;175
9.7.3;3 Phosphorylation of the purified CaCB-receptor;175
9.7.4;4 Structure of the a1- and ß-subunits of the skeletal muscle Ca2+ channel;177
9.7.5;5 Identification of L-type Ca2+ channel proteins in other tissues
;179
9.7.6;6 Reconstitution of an L-type Ca2+ channel from the skeletal muscle CaCB-receptor;180
9.7.7;7 Conclusions;181
9.7.8;Acknowledgements;181
9.7.9;References;182
9.8;Chapter 11. Structural Characteristics of Cation and Anion Channels Directly Operated by Agonists;186
9.8.1;1 Classes of receptor-operated channels;186
9.8.2;2 Ligand-operated ion channels;188
9.8.3;3 Vertebrate nicotinic acetylcholine receptors;189
9.8.4;4 Homo-oligomeric forms of nicotinic receptors in insects;193
9.8.5;5 GABAA and glycine receptors;198
9.8.6;6 The ion channel in the structure;201
9.8.7;7 Conclusions;202
9.8.8;References;203
9.9;Chapter 12. Activation and Desensitization of Glutamate Receptors in Mammalian CNS;210
9.9.1;1 Introduction;210
9.9.2;2 Techniques used for rapid perfusion to limit desensitization
;212
9.9.3;3 Responses to fast applications of excitatory amino acids;213
9.9.4;4 Glycine modulates desensitization at NMDA receptors;215
9.9.5;5 Dose–response analysis for activation of NMDA and quisqualate receptors;216
9.9.6;6 Implications for synaptic transmission;218
9.9.7;Acknowledgements;221
9.9.8;References;221
9.10;Chapter 13. Receptor-mediated Calcium Entry;224
9.10.1;1 Introduction;224
9.10.2;2 Electrophysiological approaches;226
9.10.3;3 Studies with fluorescent indicators of [Ca2+]i;230
9.10.4;4 Conclusion;237
9.10.5;Acknowledgements;238
9.10.6;References;238
10;PART 3: Ions and Fluid Transport;242
10.1;Chapter 14. Pathways for Cell Volume Regulation via Potassium and Chloride Loss;244
10.1.1;1 Introduction: transport processes involved in RVD;244
10.1.2;2 Coupled KCI co-transport in hepatocytes;249
10.1.3;3 Anion dependence and kinetic properties of KCI co-transport in red cells;251
10.1.4;4 Specific inhibitors of KCI co-transport;253
10.1.5;5 Loss of KCI co-transport on "young" red cell maturation;255
10.1.6;6 Discussion;256
10.1.7;Acknowledgements;258
10.1.8;References;258
10.2;Chapter 15. Epithelial Chloride Channels: Properties and Regulation;264
10.2.1;1 Introduction;264
10.2.2;2 Properties of epithelial Cl– channels;265
10.2.3;3 Regulation of epithelial Cl–channels;268
10.2.4;4 Conclusion;271
10.2.5;Acknowledgements;272
10.2.6;References;272
10.3;Chapter 16. Purification and Reconstitution of the Epithelial Chloride Channel;276
10.3.1;1 Introduction;276
10.3.2;2 Solubilization and affinity chromatography;277
10.3.3;3 Reconstitution;280
10.3.4;4 Discussion;284
10.3.5;Acknowledgements;285
10.3.6;References;285
11;PART 4: Models of Ion Permeation across Membranes;288
11.1;Chapter 17. Models of Ion Permeation through Membranes;290
11.1.1;1 Introduction;290
11.1.2;2 Molecular and Brownian dynamics;291
11.1.3;3 Interpretation of experimental data;292
11.1.4;References;302
11.2;Chapter 18. Topics Relating to the Modelling of Ion Channel Function;306
11.2.1;1 A threshold model of Na+ channel kinetics;306
11.2.2;2 A kinetic role for ionizable residues in channel proteins;313
11.2.3;References;318
12;Appendix: Abstracts of Posters;320
13;Index;402




