Khattree / Naik | Computational Methods in Biomedical Research | Buch | 978-0-367-38801-0 | sack.de

Buch, Englisch, 432 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 800 g

Khattree / Naik

Computational Methods in Biomedical Research


1. Auflage 2019
ISBN: 978-0-367-38801-0
Verlag: Taylor & Francis Ltd

Buch, Englisch, 432 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 800 g

ISBN: 978-0-367-38801-0
Verlag: Taylor & Francis Ltd


Continuing advances in biomedical research and statistical methods call for a constant stream of updated, cohesive accounts of new developments so that the methodologies can be properly implemented in the biomedical field. Responding to this need, Computational Methods in Biomedical Research explores important current and emerging computational statistical methods that are used in biomedical research.

Written by active researchers in the field, this authoritative collection covers a wide range of topics. It introduces each topic at a basic level, before moving on to more advanced discussions of applications. The book begins with microarray data analysis, machine learning techniques, and mass spectrometry-based protein profiling. It then uses state space models to predict US cancer mortality rates and provides an overview of the application of multistate models in analyzing multiple failure times. The book also describes various Bayesian techniques, the sequential monitoring of randomization tests, mixed-effects models, and the classification rules for repeated measures data. The volume concludes with estimation methods for analyzing longitudinal data.

Supplying the knowledge necessary to perform sophisticated statistical analyses, this reference is a must-have for anyone involved in advanced biomedical and pharmaceutical research. It will help in the quest to identify potential new drugs for the treatment of a variety of diseases.

Khattree / Naik Computational Methods in Biomedical Research jetzt bestellen!

Zielgruppe


Professional Practice & Development

Weitere Infos & Material


Preface. Microarray Data Analysis. Machine Learning Techniques for Bioinformatics: Fundamentals and Applications. Machine Learning Methods for Cancer Diagnosis and Prognostication. Protein Profiling for Disease Proteomics with Mass Spectrometry: Computational Challenges. Predicting US Cancer Mortality Counts Using State Space Models. Analyzing Multiple Failure Time Data Using SAS® Software. Mixed-Effects Models for Longitudinal Virologic and Immunologic HIV Data. Bayesian Computational Methods in Biomedical Research. Sequential Monitoring of Randomization Tests. Proportional Hazards Mixed-Effects Models and Applications. Classification Rules for Repeated Measures Data from Biomedical Research. Estimation Methods for Analyzing Longitudinal Data Occurring in Biomedical Research. Index.


Ravindra Khattree, Dayanand N. Naik



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.