Knauer | Algebraic Graph Theory | E-Book | sack.de
E-Book

E-Book, Englisch, Band 41, 324 Seiten

Reihe: De Gruyter Studies in MathematicsISSN

Knauer Algebraic Graph Theory

Morphisms, Monoids and Matrices
1. Auflage 2011
ISBN: 978-3-11-025509-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Morphisms, Monoids and Matrices

E-Book, Englisch, Band 41, 324 Seiten

Reihe: De Gruyter Studies in MathematicsISSN

ISBN: 978-3-11-025509-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures – like roads, computers, telephones – instances of abstract data structures – like lists, stacks, trees – and functional or object oriented programming. In turn, graphs are models for mathematical objects, like categories and functors.

This highly self-contained book about algebraic graph theory is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. It ends with a challenging chapter on the topological question of embeddability of Cayley graphs on surfaces.

Knauer Algebraic Graph Theory jetzt bestellen!

Zielgruppe


Graduate and Advances Undergraduate Students of Mathematics and Computer Sciences, Researchers; Academic Libraries


Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;12
3;1 Directed and undirected graphs;18
3.1;1.1 Formal description of graphs;18
3.2;1.2 Connectedness and equivalence relations;21
3.3;1.3 Some special graphs;22
3.4;1.4 Homomorphisms;24
3.5;1.5 Half-, locally, quasi-strong and metric homomorphisms;28
3.6;1.6 The factor graph, congruences, and the Homomorphism Theorem;31
3.6.1;Factor graphs;31
3.6.2;The Homomorphism Theorem;32
3.7;1.7 The endomorphism type of a graph;35
3.8;1.8 Comments;41
4;2 Graphs and matrices;43
4.1;2.1 Adjacency matrix;43
4.1.1;Isomorphic graphs and the adjacency matrix;45
4.1.2;Components and the adjacency matrix;46
4.1.3;Adjacency list;47
4.2;2.2 Incidence matrix;47
4.3;2.3 Distances in graphs;48
4.3.1;The adjacency matrix and paths;49
4.3.2;The adjacency matrix, the distance matrix and circuits;50
4.4;2.4 Endomorphisms and commuting graphs;51
4.5;2.5 The characteristic polynomial and eigenvalues;52
4.6;2.6 Circulant graphs;57
4.7;2.7 Eigenvalues and the combinatorial structure;60
4.7.1;Cospectral graphs;60
4.7.2;Eigenvalues, diameter and regularity;61
4.7.3;Automorphisms and eigenvalues;62
4.8;2.8 Comments;63
5;3 Categories and functors;65
5.1;3.1 Categories;65
5.1.1;Categories with sets and mappings, I;66
5.1.2;Constructs, and small and large categories;66
5.1.3;Special objects and morphisms;67
5.1.4;Categories with sets and mappings, II;68
5.1.5;Categories with graphs;68
5.1.6;Other categories;69
5.2;3.2 Products & Co;70
5.2.1;Coproducts;70
5.2.2;Products;72
5.2.3;Tensor products;74
5.2.4;Categories with sets and mappings, III;75
5.3;3.3 Functors;75
5.3.1;Covariant and contravariant functors;76
5.3.2;Composition of functors;76
5.3.3;Special functors – examples;77
5.3.4;Mor functors;77
5.3.5;Properties of functors;78
5.4;3.4 Comments;80
6;4 Binary graph operations;81
6.1;4.1 Unions;81
6.1.1;The union;81
6.1.2;The join;83
6.1.3;The edge sum;84
6.2;4.2 Products;87
6.2.1;The cross product;88
6.2.2;The coamalgamated product;89
6.2.3;The disjunction of graphs;92
6.3;4.3 Tensor products and the product in EGra;92
6.3.1;The box product;93
6.3.2;The boxcross product;96
6.3.3;The complete product;96
6.3.4;Synopsis of the results;97
6.3.5;Product constructions as functors in one variable;97
6.4;4.4 Lexicographic products and the corona;98
6.4.1;Lexicographic products;98
6.4.2;The corona;99
6.5;4.5 Algebraic properties;100
6.6;4.6 Mor constructions;102
6.6.1;Diamond products;102
6.6.2;Left inverses for tensor functors;104
6.6.3;Power products;105
6.6.4;Left inverses to product functors;106
6.7;4.7 Comments;107
7;5 Line graph and other unary graph operations;108
7.1;5.1 Complements, opposite graphs and geometric duals;108
7.2;5.2 The line graph;109
7.2.1;Determinability of G by LG;112
7.3;5.3 Spectra of line graphs;114
7.3.1;Which graphs are line graphs?;116
7.4;5.4 The total graph;118
7.5;5.5 The tree graph;119
7.6;5.6 Comments;120
8;6 Graphs and vector spaces;121
8.1;6.1 Vertex space and edge space;121
8.1.1;The boundary & Co;122
8.1.2;Matrix representation;123
8.2;6.2 Cycle spaces, bases & Co;124
8.2.1;The cycle space;124
8.2.2;The cocycle space;126
8.2.3;Orthogonality;128
8.2.4;The boundary operator & Co;129
8.3;6.3 Application: MacLane’s planarity criterion;130
8.4;6.4 Homology of graphs;133
8.4.1;Exact sequences of vector spaces;133
8.4.2;Chain complexes and homology groups of graphs;134
8.5;6.5 Application: number of spanning trees;136
8.6;6.6 Application: electrical networks;140
8.7;6.7 Application: squared rectangles;145
8.8;6.8 Application: shortest (longest) paths;149
8.9;6.9 Comments;152
9;7 Graphs, groups and monoids;153
9.1;7.1 Groups of a graph;153
9.1.1;Edge group;154
9.2;7.2 Asymmetric graphs and rigid graphs;155
9.3;7.3 Cayley graphs;161
9.4;7.4 Frucht-type results;163
9.4.1;Frucht’s theorem and its generalization for monoids;164
9.5;7.5 Graph-theoretic requirements;165
9.5.1;Smallest graphs for given groups;166
9.5.2;Additional properties of group-realizing graphs;167
9.6;7.6 Transformation monoids and permutation groups;171
9.7;7.7 Actions on graphs;173
9.7.1;Fixed-point-free actions on graphs;173
9.7.2;Transitive actions on graphs;174
9.7.3;Regular actions;175
9.8;7.8 Comments;177
10;8 The characteristic polynomial of graphs;178
10.1;8.1 Eigenvectors of symmetric matrices;178
10.1.1;Eigenvalues and connectedness;179
10.1.2;Regular graphs and eigenvalues;180
10.2;8.2 Interpretation of the coefficients of chapo(G);181
10.2.1;Interpretation of the coefficients for undirected graphs;183
10.3;8.3 Spectra of trees;185
10.3.1;Recursion formula for trees;185
10.4;8.4 The spectral radius of undirected graphs;186
10.4.1;Subgraphs;186
10.4.2;Upper bounds;187
10.4.3;Lower bounds;188
10.5;8.5 Spectral determinability;189
10.5.1;Spectral uniqueness of Kn and Kp;q;189
10.6;8.6 Eigenvalues and group actions;191
10.6.1;Groups, orbits and eigenvalues;191
10.7;8.7 Transitive graphs and eigenvalues;193
10.7.1;Derogatory graphs;194
10.7.2;Graphs with Abelian groups;195
10.8;8.8 Comments;197
11;9 Graphs and monoids;198
11.1;9.1 Semigroups;198
11.2;9.2 End-regular bipartite graphs;202
11.2.1;Regular endomorphisms and retracts;202
11.2.2;End-regular and End-orthodox connected bipartite graphs;203
11.3;9.3 Locally strong endomorphisms of paths;205
11.3.1;Undirected paths;205
11.3.2;Directed paths;208
11.3.3;Algebraic properties of LEnd;211
11.4;9.4 Wreath product of monoids over an act;214
11.5;9.5 Structure of the strong monoid;217
11.5.1;The canonical strong decomposition of G;218
11.5.2;Decomposition of SEnd;219
11.5.3;A generalized wreath product with a small category;221
11.5.4;Cardinality of SEnd(G);221
11.6;9.6 Some algebraic properties of SEnd;222
11.6.1;Regularity and more for TA;222
11.6.2;Regularity and more for SEnd(G);223
11.7;9.7 Comments;224
12;10 Compositions, unretractivities and monoids;225
12.1;10.1 Lexicographic products;225
12.2;10.2 Unretractivities and lexicographic products;227
12.3;10.3 Monoids and lexicographic products;231
12.4;10.4 The union and the join;234
12.4.1;The sum of monoids;234
12.4.2;The sum of endomorphism monoids;235
12.4.3;Unretractivities;236
12.5;10.5 The box product and the cross product;238
12.5.1;Unretractivities;239
12.5.2;The product of endomorphism monoids;240
12.6;10.6 Comments;241
13;11 Cayley graphs of semigroups;242
13.1;11.1 The Cay functor;242
13.1.1;Reflection and preservation of morphisms;244
13.1.2;Does Cay produce strong homomorphisms?;245
13.2;11.2 Products and equalizers;246
13.2.1;Categorical products;246
13.2.2;Equalizers;248
13.2.3;Other product constructions;249
13.3;11.3 Cayley graphs of right and left groups;251
13.4;11.4 Cayley graphs of strong semilattices of semigroups;254
13.5;11.5 Application: strong semilattices of (right or left) groups;257
13.6;11.6 Comments;261
14;12 Vertex transitive Cayley graphs;262
14.1;12.1 Aut-vertex transitivity;262
14.2;12.2 Application to strong semilattices of right groups;264
14.2.1;ColAut(S,C)-vertex transitivity;266
14.2.2;Aut(S, C)-vertex transitivity;267
14.3;12.3 Application to strong semilattices of left groups;270
14.3.1;Application to strong semilattices of groups;273
14.4;12.4 End' (S, C)-vertex transitive Cayley graphs;273
14.5;12.5 Comments;277
15;13 Embeddings of Cayley graphs – genus of semigroups;278
15.1;13.1 The genus of a group;278
15.2;13.2 Toroidal right groups;282
15.3;13.3 The genus of (A × Rr);287
15.3.1;Cayley graphs of A × R4;287
15.3.2;Constructions of Cayley graphs for A × R2 and A × R3;287
15.4;13.4 Non-planar Clifford semigroups;292
15.5;13.5 Planar Clifford semigroups;296
15.6;13.6 Comments;301
16;Bibliography;302
17;Index;318
18;Index of symbols;324


Knauer, Ulrich
Ulrich Knauer, Carl von Ossietzky Universität Oldenburg, Germany

Ulrich Knauer, Carl von Ossietzky Universität Oldenburg, Germany



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.