E-Book, Englisch, Band 15, 269 Seiten
Reihe: Radon Series on Computational and Applied MathematicsISSN
Kritzer / Niederreiter / Pillichshammer Uniform Distribution and Quasi-Monte Carlo Methods
1. Auflage 2014
ISBN: 978-3-11-031793-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Discrepancy, Integration and Applications
E-Book, Englisch, Band 15, 269 Seiten
Reihe: Radon Series on Computational and Applied MathematicsISSN
ISBN: 978-3-11-031793-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Researchers in Mathematics, Finance, Biology, and Computer Science; Academic libraries
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface;5
2;Contents;7
3;Metric number theory, lacunary series and systems of dilated functions;11
3.1;1 Uniform distribution modulo 1;12
3.2;2 Metric number theory;14
3.3;3 Discrepancy;16
3.4;4 Lacunary series;17
3.5;5 Almost everywhere convergence;20
3.6;6 Sums involving greatest common divisors;22
4;Strong uniformity;27
4.1;1 Introduction;27
4.2;2 Superuniformity and super-duper uniformity;36
4.2.1;2.1 Superuniformity of the typical billiard paths;36
4.2.2;2.2 Super-duper uniformity of the 2-dimensional ray;47
4.3;3 Superuniformmotions;51
4.3.1;3.1 Billiards in other shapes;51
4.3.2;3.2 Superuniformity of the geodesics on an equifacial tetrahedron surface;52
5;Discrepancy theory and harmonic analysis;55
5.1;1 Introduction;55
5.2;2 Exponential sums;56
5.3;3 Fourier analysis methods;59
5.3.1;3.1 Rotated rectangles;59
5.3.2;3.2 The lower bound for circles;61
5.3.3;3.3 Further remarks;63
5.4;4 Dyadic harmonic analysis: discrepancy function estimates;64
5.4.1;4.1 Lp -discrepancy, 1 < p <
8 ;65
5.4.2;4.2 The L8
discrepancy estimates;66
5.4.3;4.3 The other endpoint, L1
;68
6;Explicit constructions of point sets and sequences with low discrepancy;73
6.1;1 Introduction;73
6.2;2 Lower bounds;75
6.3;3 Upper bounds;77
6.4;4 Digital nets and sequences;79
6.5;5 Walsh series expansion of the discrepancy function;81
6.6;6 The construction of finite point sets according to Chen and Skriganov;87
6.7;7 The construction of infinite sequences according to Dick and Pillichshammer;89
6.8;8 Extensions to the Lq
discrepancy;92
6.9;9 Extensions to Orlicz norms of the discrepancy function;93
7;Subsequences of automatic sequences and uniform distribution;97
7.1;1 Introduction;97
7.2;2 Automatic sequences;100
7.3;3 Subsequences along the sequence nc
;103
7.4;4 Polynomial subsequences;105
7.5;5 Subsequences along the primes;108
8;On Atanassov’s methods for discrepancy bounds of low-discrepancy sequences;115
8.1;1 Introduction;115
8.2;2 Atanassov’s methods for Halton sequences;117
8.2.1;2.1 Review of Halton sequences;117
8.2.2;2.2 Review of previous bounds for the discrepancy of Halton sequences;118
8.2.3;2.3 Atanassov’s methods applied to Halton sequences;118
8.2.4;2.4 Scrambling Halton sequences with matrices;123
8.3;3 Atanassov’s method for
(t,s)-sequences ;128
8.3.1;3.1 Review of (t,s)-sequences
;128
8.3.2;3.2 Review of bounds for the discrepancy of (t,s)-sequences
;129
8.3.3;3.3 Atanassov’smethod applied to (t,s)-
sequences;129
8.3.4;3.4 The special case of even bases for (t,s)-sequences;131
8.4;4 Atanassov’s methods for generalized Niederreiter sequences and (??, e, ??)- sequences;134
9;The hybrid spectral test: a unifying concept;137
9.1;1 Introduction;137
9.2;2 Adding digit vectors;139
9.3;3 Notation;142
9.4;4 The hybrid spectral test;144
9.5;5 Examples;147
9.5.1;5.1 Example I: Integration lattices;147
9.5.2;5.2 Example II: Extreme and star discrepancy;150
10;Tractability of multivariate analytic problems;157
10.1;1 Introduction;157
10.2;2 Tractability;159
10.3;3 A weighted Korobov space of analytic functions;164
10.4;4 Integration in H(Ks,a,b) ;166
10.5;5 L2-approximation in
H(Ks,a,b);172
10.6;6 Conclusion and outlook;179
11;Discrepancy estimates for sequences: new results and open problems;181
11.1;1 Introduction;181
11.2;2 Metrical and average type discrepancy estimates for digital point sets and sequences and for good lattice point sets;184
11.3;3 Discrepancy estimates for and applications of hybrid sequences;191
11.4;4 Miscellaneous problems;195
12;A short introduction to quasi-Monte Carlo option pricing;201
12.1;1 Overview;201
12.2;2 Foundations of financial mathematics;202
12.2.1;2.1 Bonds, stocks and derivatives;202
12.2.2;2.2 Arbitrage and the no-arbitrage principle;204
12.2.3;2.3 The Black–Scholesmodel;206
12.2.4;2.4 SDE models;207
12.2.5;2.5 Lévy models;209
12.2.6;2.6 Examples;210
12.3;3 MC and QMC simulation;211
12.3.1;3.1 Nonuniform random number generation;211
12.3.2;3.2 Generation of Brownian paths;218
12.3.3;3.3 Generation of Lévy paths;224
12.3.4;3.4 Multilevel (quasi-)Monte Carlo;226
12.3.5;3.5 Examples;228
13;The construction of good lattice rules and polynomial lattice rules;233
13.1;1 Lattice rules and polynomial lattice rules;233
13.1.1;1.1 Lattice rules;234
13.1.2;1.2 Polynomial lattice rules;235
13.2;2 The worst-case error;237
13.2.1;2.1 Koksma–Hlawka error bound;237
13.2.2;2.2 Lattice rules;239
13.2.3;2.3 Polynomial lattice rules;242
13.3;3 Weighted worst-case errors;246
13.4;4 Some standard spaces;248
13.4.1;4.1 Lattice rules and Fourier spaces;248
13.4.2;4.2 Randomly-shifted lattice rules and the unanchored Sobolev space;249
13.4.3;4.3 Tent-transformed lattice rules and the cosine space;251
13.4.4;4.4 Polynomial lattice rules and Walsh spaces;253
13.5;5 Component-by-component constructions;255
13.5.1;5.1 Component-by-component construction;255
13.5.2;5.2 Fast component-by-component construction;259
13.6;6 Conclusion;262
14;Index;267