Kudenko / Alonso / Kazakov | Adaptive Agents and Multi-Agent Systems II | Buch | 978-3-540-25260-3 | sack.de

Buch, Englisch, Band 3394, 313 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1020 g

Reihe: Lecture Notes in Computer Science

Kudenko / Alonso / Kazakov

Adaptive Agents and Multi-Agent Systems II

Adaptation and Multi-Agent Learning
2005
ISBN: 978-3-540-25260-3
Verlag: Springer Berlin Heidelberg

Adaptation and Multi-Agent Learning

Buch, Englisch, Band 3394, 313 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1020 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-25260-3
Verlag: Springer Berlin Heidelberg


Adaptive agents and multi-agent systems is an emerging and exciting interdisciplinary area of research and development involving artificial intelligence, software engineering, and developmental biology, as well as cognitive and social science.

This book presents 17 revised and carefully reviewed papers taken from two workshops on the topic as well as 2 invited papers by leading researchers in the area. The papers deal with various aspects of machine learning, adaptation, and evolution in the context of agent systems and autonomous agents.

Kudenko / Alonso / Kazakov Adaptive Agents and Multi-Agent Systems II jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Gödel Machines: Towards a Technical Justification of Consciousness.- Postext – A Mind for Society.- Comparing Resource Sharing with Information Exchange in Co-operative Agents, and the Role of Environment Structure.- Baselines for Joint-Action Reinforcement Learning of Coordination in Cooperative Multi-agent Systems.- SMART (Stochastic Model Acquisition with ReinforcemenT) Learning Agents: A Preliminary Report.- Towards Time Management Adaptability in Multi-agent Systems.- Learning to Coordinate Using Commitment Sequences in Cooperative Multi-agent Systems.- Reinforcement Learning of Coordination in Heterogeneous Cooperative Multi-agent Systems.- Evolving the Game of Life.- The Strategic Control of an Ant-Based Routing System Using Neural Net Q-Learning Agents.- Dynamic and Distributed Interaction Protocols.- Advice-Exchange Between Evolutionary Algorithms and Reinforcement Learning Agents: Experiments in the Pursuit Domain.- Evolving Strategies for Agents in the Iterated Prisoner’s Dilemma in Noisy Environments.- Experiments in Subsymbolic Action Planning with Mobile Robots.- Robust Online Reputation Mechanism by Stochastic Approximation.- Learning Multi-agent Search Strategies.- Combining Planning with Reinforcement Learning for Multi-robot Task Allocation.- Multi-agent Reinforcement Learning in Stochastic Single and Multi-stage Games.- Towards Adaptive Role Selection for Behavior-Based Agents.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.