Kunjumuhammed / Kuenzel / Pal | Simulation of Power System with Renewables | E-Book | sack.de
E-Book

E-Book, Englisch, 266 Seiten

Kunjumuhammed / Kuenzel / Pal Simulation of Power System with Renewables


1. Auflage 2019
ISBN: 978-0-12-811254-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 266 Seiten

ISBN: 978-0-12-811254-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Simulation of Power System with Renewables provides details on the modelling and efficient implementation of MATLAB, particularly with a renewable energy driven power system. The book presents a step-by-step approach to modelling implementation, including all major components used in current power systems operation, giving the reader the opportunity to learn how to gather models for conventional generators, wind farms, solar plants and FACTS control devices. Users will find this to be a central resource for modelling, building and simulating renewable power systems, including discussions on its limitations, assumptions on the model, and the implementation and analysis of the system. - Presents worked examples and equations in each chapter that address system limitations and flexibility - Provides step-by-step guidance for building and simulating models with required data - Contains case studies on a number of devices, including FACTS, and renewable generation

was a Research Associate in the Control and Power Research Group at the Department of Electrical and Electronic Engineering at Imperial College London. He received the B.Tech. degree from Mahatma Gandhi University, India, the M.S. degree from the Indian Institute of Technology Madras, India, and the Ph.D. degree from Imperial College London, U.K., in 2002, 2006, and 2012, respectively, currently Linash is working as HVDC Engineer at Mitsubishi Electric Europe, UK.

Kunjumuhammed / Kuenzel / Pal Simulation of Power System with Renewables jetzt bestellen!

Weitere Infos & Material


1;SIMULATION OF POWER SYSTEM WITH RENEWABLES;2
2;SIMULATION OF POWER SYSTEM WITH RENEWABLES;4
3;Copyright;5
4;Dedication;6
5;Contents;8
6;About the authors;12
7;Preface;14
8;One - Introduction;18
8.1;1.1 Power system – history of development (Kundur);18
8.2;1.2 Power system frequency;22
8.3;1.3 Phasors in AC systems;23
8.4;1.4 Per unit systems;24
8.5;1.5 Steady state in power system;25
8.6;1.6 Stability issues in power system;26
8.7;1.7 Mathematical representation of power system;29
8.8;1.8 Simulation in Matlab;30
8.9;1.9 Assumptions;31
8.10;1.10 Summary;32
8.11;Further reading;32
9;Two - Transmission network modelling;34
9.1;2.1 Admittance matrix;34
9.2;2.2 Example;37
9.3;2.3 Power flow computation;37
9.4;2.4 Formulation of jacobian;40
9.5;2.5 Example of three-bus system;41
9.6;2.6 Power flow implementation;44
9.7;2.7 Study case: four-machine system;45
9.8;2.8 Exercise;46
9.9;2.9 Exercise;50
9.10;2.10 Including the network in the Simulink time domain simulation;50
9.11;2.11 Conclusions;54
9.12;References;55
10;Three - Synchronous machine modelling;56
10.1;3.1 Synchronous machine introduction;56
10.2;3.2 Synchronous machine operation;57
10.3;3.3 Reference frame;59
10.4;3.4 Dynamic equations of a synchronous machine in d-q reference frame;67
10.4.1;List of variables:;70
10.5;3.5 Initialization of the dynamic model;70
10.6;3.6 Simulink modelling;77
10.7;3.7 Study case: single machine infinite bus test system time domain results;85
10.8;3.8 Dynamic models of synchronous machines;87
10.9;3.9 Simulation model of the two-area test system;91
10.9.1;3.9.1 Simulink block representing multiple synchronous machines;92
10.10;References;97
11;Four - Analysis and controller design ideas;98
11.1;4.1 System representations and dynamic response;98
11.1.1;4.1.1 Stability of the linear system;100
11.1.1.1;4.1.1.1 Exercise 4.1;100
11.2;4.2 Power system model for analysis;106
11.3;4.3 Linearization and state space representation;106
11.4;4.4 Eigenvalues, eigenvectors and participation factor;109
11.4.1;4.4.1 Exercise 4.2;110
11.5;4.5 Transfer function and ZPK representation;112
11.6;4.6 Root locus, Bode plot, Nichols plot and Nyquist plot;112
11.7;4.7 Analysis of stable system;116
11.7.1;4.7.1 Root locus plots;116
11.7.2;4.7.2 Bode, Nichols and Nyquist plots;117
11.8;4.8 Analysis of unstable system;117
11.8.1;4.8.1 Linear system analyzer;119
11.9;4.9 System response;119
11.10;4.10 Controller design;120
11.10.1;4.10.1 PI controller;120
11.10.2;4.10.2 Control System Designer;122
11.10.3;4.10.3 Pole placement;125
11.10.4;4.10.4 Linear Quadratic Regulator controller;128
11.11;4.11 Conclusions;129
12;Five - Load modelling;130
12.1;5.1 Types of loads;130
12.2;5.2 Descriptions, key equations and integration of ZIP model;131
12.3;5.3 Study case: four-machine system using different load models;135
12.4;5.4 Initial condition block implementation;137
12.5;5.5 Comparison of results;141
12.6;5.6 Conclusion of ZIP load modelling;149
12.7;Acknowledgement;149
12.8;References;149
13;Six - Wind turbine generator modelling;150
13.1;6.1 Introduction;150
13.2;6.2 Building blocks of DFIG-SMIB simulation model;151
13.2.1;6.2.1 Network;153
13.2.2;6.2.2 Wind turbine model;154
13.2.2.1;6.2.2.1 Wind turbine aerodynamic modelling;154
13.2.2.1.1;6.2.2.1.1 Simulink representation of turbine model;157
13.2.2.2;6.2.2.2 Turbine generator mechanical drive train model;159
13.2.3;6.1.3 Doubly fed induction generator;161
13.2.4;6.1.4 LCL filter;166
13.2.5;6.1.5 Back-to-back capacitor;168
13.2.6;6.1.6 Machine-side converter controller;169
13.2.7;6.1.7 Grid-side converter controller;172
13.3;6.3 Single machine infinite bus model integration and testing;174
13.3.1;6.3.1 Dynamic simulation;174
13.4;6.4 Initialization of SMIB-DFIG system;177
13.5;6.5 Further modifications in DFIG-WTG model;183
13.6;6.6 Permanent magnet synchronous generator modelling;184
13.6.1;6.6.1 Turbine model;185
13.6.2;6.6.2 Permanent magnet synchronous generator model;185
13.6.3;6.6.3 Machine-side converter controller;186
13.6.4;6.6.4 Back-to-back capacitor, GSC controller, LCL filter and network;187
13.7;6.7 Initialization of PMSG-SMIB system;187
13.8;6.8 Modal analysis and dynamic simulation results;189
13.9;6.9 Simulation of wind farm having DFIG- and PMSG-type WTGs;189
13.9.1;6.9.1 Network representation;194
13.9.2;6.9.2 Wind farm simulink model;194
13.10;References;196
14;Seven - Modelling of solar generation;198
14.1;7.1 Description of solar generation;198
14.2;7.2 Modelling solar power generators;199
14.3;7.3 Western Electricity Coordinating Council generic model;201
14.4;7.4 Case study: photovoltaic system model;201
14.5;References;219
15;Eight - Modelling of flexible AC transmission system devices;222
15.1;8.1 Introduction;222
15.2;8.2 Flexible AC transmission system devices;223
15.2.1;8.2.1 Applications;226
15.2.1.1;8.2.1.1 Example system using SVC and TCSC;226
15.3;8.3 Static VAR Compensator;227
15.3.1;8.3.1 Modelling of static VAR compensator;230
15.4;8.4 Thyristor controlled series compensation;230
15.4.1;8.4.1 Modelling of thyristor controlled series compensator;231
15.5;8.5 Implementation of SVC and TCSC models;232
15.5.1;8.5.1 Power flow solution considering SVC and TCSC;232
15.5.1.1;8.5.1.1 Representation of static VAR compensator;234
15.5.1.2;8.5.1.2 Representation of thyristor controlled series compensator;238
15.6;References;241
16;Nine - Case study of interarea oscillations in power system;242
16.1;9.1 Introduction;242
16.2;9.2 Analysis of two-area system;242
16.2.1;9.2.1 Participation factor analysis;244
16.3;9.3 Two-area system with a thyristor controlled series compensator;245
16.3.1;9.3.1 Simulink model;245
16.4;9.3.1.1 Feedback signal selection for power oscillation damping;247
16.5;9.3.1.2 Linearization and calculation of residue;247
16.6;9.3.1.3 Implementation of power oscillation damping;247
16.7;9.3.1.4 Controller performance;251
16.8;9.4 Two-area system with a static VAR compensator;253
16.9;9.5 Two-area system with wind turbines;253
16.9.1;9.5.1 Building Simulink model;255
16.9.2;9.5.2 Initialization program;259
16.9.3;9.5.3 Simulation results;261
16.10;9.6 Conclusions;262
16.11;References;262
17;Index;264
17.1;A;264
17.2;B;264
17.3;C;264
17.4;D;264
17.5;E;264
17.6;F;264
17.7;G;264
17.8;H;264
17.9;I;264
17.10;J;264
17.11;L;264
17.12;M;264
17.13;N;265
17.14;P;265
17.15;R;265
17.16;S;265
17.17;T;266
17.18;U;266
17.19;V;266
17.20;W;266
17.21;Z;267



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.