E-Book, Englisch, 166 Seiten
Landman / Nathanson / Nešetril Combinatorial Number Theory
1. Auflage 2013
ISBN: 978-3-11-028061-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Proceedings of the "Integers Conference 2011", Carrollton, Georgia, October 26-29, 2011
E-Book, Englisch, 166 Seiten
Reihe: De Gruyter Proceedings in Mathematics
ISBN: 978-3-11-028061-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Graduate Students, Researchers, and Lecturers in Mathematics; Aca
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface;5
2;1 The Misère Monoid of One-Handed Alternating Games;11
2.1;1.1 Introduction;11
2.1.1;1.1.1 Background;12
2.2;1.2 Equivalences;14
2.3;1.3 Outcomes;20
2.4;1.4 The Misère Monoid;22
3;2 Images of C-Sets and Related Large Sets under Nonhomogeneous Spectra;25
3.1;2.1 Introduction;25
3.2;2.2 The Various Notions of Size;29
3.3;2.3 The Functions fa and ha;35
3.4;2.4 Preservation of J -Sets, C-Sets, and C*-Sets;37
3.5;2.5 Preservation of Ideals;43
4;3 On the Differences Between Consecutive Prime Numbers, I;47
4.1;3.1 Introduction and Statement of Results;47
4.2;3.2 The Hardy–Littlewood Prime k-Tuple Conjectures;48
4.3;3.3 Inclusion–Exclusion for Consecutive Prime Numbers;49
4.4;3.4 Proof of the Theorem;52
5;4 On Sets of Integers Which Are Both Sum-Free and Product-Free;55
5.1;4.1 Introduction;55
5.2;4.2 The Upper Density;57
5.3;4.3 An Upper Bound for the Density in Z/nZ;60
5.4;4.4 Examples With Large Density;61
6;5 Four Perspectives on Secondary Terms in the Davenport–Heilbronn Theorems;65
6.1;5.1 Introduction;65
6.2;5.2 Counting Fields in General;66
6.2.1;5.2.1 Counting Torsion Elements in Class Groups;69
6.3;5.3 Davenport–Heilbronn, Delone–Faddeev, and the Main Terms;70
6.3.1;5.3.1 TheWork of Belabas, Bhargava, and Pomerance;71
6.4;5.4 The Four Approaches;72
6.5;5.5 The Shintani Zeta-Function Approach;73
6.5.1;5.5.1 Nonequidistribution in Arithmetic Progressions;76
6.6;5.6 A Refined Geometric Approach;77
6.6.1;5.6.1 Origin of the Secondary Term;78
6.6.2;5.6.2 A Correspondence for Cubic Forms;79
6.7;5.7 Equidistribution of Heegner Points;80
6.7.1;5.7.1 Heegner Points and Equidistribution;81
6.8;5.8 Hirzebruch Surfaces and the Maroni Invariant;83
6.9;5.9 Conclusion;84
7;6 Spotted Tilings and n-Color Compositions;89
7.1;6.1 Background;89
7.2;6.2 n-Color Composition Enumerations;91
7.3;6.3 Conjugable n-Color Compositions;96
8;7 A Class ofWythoff-Like Games;101
8.1;7.1 Introduction;101
8.2;7.2 Constant Function;103
8.2.1;7.2.1 A Numeration System;104
8.2.2;7.2.2 Strategy Tractability and Structure of the P-Positions;108
8.3;7.3 Superadditive Functions;109
8.4;7.4 Polynomial;113
8.5;7.5 Further Work;116
9;8 On the Multiplicative Order of FnC1=Fn Modulo Fm;119
9.1;8.1 Introduction;119
9.2;8.2 Preliminary Results;120
9.3;8.3 Proof of Theorem 8.1;124
9.4;8.4 Comments and Numerical Results;130
10;9 Outcomes of Partizan Euclid;133
10.1;9.1 Introduction;133
10.2;9.2 Game Tree Structure;135
10.3;9.3 Reducing the Signature;138
10.3.1;9.3.1 Algorithm;142
10.4;9.4 Outcome Observations;143
10.5;9.5 Open Questions;144
11;10 Lecture Hall Partitions and theWreath Products Ck . Sn;147
11.1;10.1 Introduction;147
11.2;10.2 Lecture Hall Partitions;148
11.3;10.3 Statistics on Ck . Sn;149
11.4;10.4 Statistics on s-Inversion Sequences;150
11.5;10.5 From Statistics on Ck o Sn to Statistics on In,k;151
11.6;10.6 Lecture Hall Polytopes and s-Inversion Sequences;153
11.7;10.7 Lecture Hall Partitions and the Inversion Sequences In,k;155
11.8;10.8 A Lecture Hall Statistic on Ck . Sn;158
11.9;10.9 Inflated Eulerian Polynomials for Ck . Sn;160
11.10;10.10 Concluding Remarks;163