Lang | Complex Analysis | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 103, 370 Seiten, eBook

Reihe: Graduate Texts in Mathematics

Lang Complex Analysis


2. Auflage 1985
ISBN: 978-1-4757-1871-3
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 103, 370 Seiten, eBook

Reihe: Graduate Texts in Mathematics

ISBN: 978-1-4757-1871-3
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



The present book is meant as a text for a course on complex analysis at the advanced undergraduate level, or first-year graduate level. Somewhat more material has been included than can be covered at leisure in one term, to give opportunities for the instructor to exercise his taste, and lead the course in whatever direction strikes his fancy at the time. A large number of routine exercises are included for the more standard portions, and a few harder exercises of striking theoretical interest are also included, but may be omitted in courses addressed to less advanced students. In some sense, I think the classical German prewar texts were the best (Hurwitz-Courant, Knopp, Bieberbach, etc. ) and I would recom mend to anyone to look through them. More recent texts have empha sized connections with real analysis, which is important, but at the cost of exhibiting succinctly and clearly what is peculiar about complex anal ysis: the power series expansion, the uniqueness of analytic continuation, and the calculus of residues. The systematic elementary development of formal and convergent power series was standard fare in the German texts, but only Cartan, in the more recent books, includes this material, which I think is quite essential, e. g. , for differential equations. I have written a short text, exhibiting these features, making it applicable to a wide variety of tastes. The book essentially decomposes into two parts.

Lang Complex Analysis jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


One Basic Theory.- I Complex Numbers and Functions.- II Power Series.- III Cauchy’s Theorem, First Part.- IV Cauchy’s Theorem, Second Part.- V Applications of Cauchy’s Integral Formula.- VI Calculus of Residues.- VII Conformai Mappings.- VIII Harmonic Functions.- Two Various Analytic Topics.- IX Applications of the Maximum Modulus Principle.- X Entire and Meromorphic Functions.- XI Elliptic Functions.- XII Differentiating Under an Integral.- XIII Analytic Continuation.- XIV The Riemann Mapping Theorem.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.