Langheim Energy Consumption and Autonomous Driving
1. Auflage 2016
ISBN: 978-3-319-19818-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the 3rd CESA Automotive Electronics Congress, Paris, 2014
E-Book, Englisch, 238 Seiten, eBook
Reihe: Lecture Notes in Mobility
ISBN: 978-3-319-19818-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This volume collects selected papers of the 3rd CESA Automotive Electronics Congress, Paris, 2014. CESA is the most important automotive electronics conference in France. The topical focus lies on state-of-the-art automotive electronics with respect to energy consumption and autonomous driving. The target audience primarily comprises industry leaders and research experts in the automotive industry.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;CESA Committees;9
3;Contents;11
4;Part I Market;14
5;1 Autonomous Driving: Disruptive Innovation that Promises to Change the Automotive Industry as We Know It;15
5.1;Abstract;15
5.2;1 Automated Driving: A Staged Evolution;15
5.2.1;1.1 A Combination of Technology Innovation, Competitive Forces, Benefits and Regulations Are Fueling the Trend Towards Automated Driving;15
5.2.2;1.2 A Staged Evolution: Early Autonomous Driving Features Are Already Available, While Full Self-Driving Automation Will Be Ready by 2025--2030;16
5.3;2 Technology to Replace Human Senses: Removing the Human from the Driver's Seat Requires Four Key Areas of Mastery;17
5.4;3 Significant Opportunities Await: By 2030, New Opportunities from Autonomous Driving Will Be Around USD 40--60 bn, and That's just the Start;18
5.5;4 Fortune Favors the Prepared: To Capitalize on the New Opportunities, OEMs and Suppliers Need to Prepare and Take Action Today;20
5.5.1;4.1 Key Focus Areas for OEM;20
5.5.1.1;4.1.1 Driving Experience;20
5.5.1.2;4.1.2 Prediction and Decision Algorithms;20
5.5.1.3;4.1.3 Architecture;20
5.5.1.4;4.1.4 Business Models;21
5.5.1.5;4.1.5 Areas of Differentiation;21
5.5.2;4.2 Key Focus Areas by Supplier Type;21
5.5.2.1;4.2.1 Major System Suppliers Providing Full--Spectrum Solutions;22
5.5.2.2;4.2.2 Specialized Suppliers Already Active in Areas of ADAS and Active Safety;22
5.5.2.3;4.2.3 Suppliers Focused on Technology Innovation;22
5.6;Reference;22
6;Connected Car and Acceptance;23
7;Part II Connected Car and Acceptance;23
8;2 Automotive Security Testing---The Digital Crash Test;24
8.1;Abstract;24
8.2;1 Introduction;25
8.3;2 Automotive Attack Motivations and Threats;25
8.4;3 Automotive Security Evaluations;26
8.5;4 Theoretical Automotive Security Analyses;27
8.6;5 Practical Automotive Security Testing;28
8.6.1;5.1 Functional Automotive Security Testing;29
8.6.2;5.2 Automotive Vulnerability Scans;30
8.6.3;5.3 Automotive Fuzzing;30
8.6.4;5.4 Automotive Penetration Testing;31
8.7;6 Conclusion and Outlook;32
8.8;References;33
9;3 Accelerated and Cost Effective Deployment of V2X Solution;34
9.1;Abstract;34
9.2;1 Introduction;35
9.3;2 OEMs Requirements;35
9.3.1;2.1 Overview;35
9.3.2;2.2 V2X Solution Location;35
9.3.3;2.3 Supplier Eco-System;36
9.3.4;2.4 Low-Cost Solution;36
9.4;3 Key Technical Requirements;36
9.4.1;3.1 Comprehensive Functional Automotive-Grade Solution;36
9.4.2;3.2 Standard Compliance and Interoperability;37
9.4.3;3.3 Worldwide Support;37
9.4.4;3.4 Safety Critical Reliability;37
9.4.5;3.5 Secure Solution;38
9.5;4 Cost-Effective Solution;39
9.5.1;4.1 Cost Contributors;39
9.5.2;4.2 Cost Saving Factors;39
9.6;5 Quick Solution Availability;40
9.7;6 Case Studies;40
9.7.1;6.1 Adding V2X to TCU;40
9.7.2;6.2 Standalone V2X ECU;41
9.8;7 Conclusion;41
9.9;Acknowledgments;42
10;4 V2V and V2I Communications---From Vision to Reality;43
10.1;Abstract;43
10.2;1 Introduction;43
10.3;2 V2V and V2I in Action;44
10.4;3 Security in the Connected Car;44
10.5;4 Setting the Standard;45
11;Part III Technical Progress—ADAS;46
12;5 Model-Based Design for the Development and System-Level Testing of ADAS;47
12.1;Abstract;47
12.2;1 Introduction;48
12.3;2 Model-Based Design;48
12.4;3 Image Processing and Computer Vision;49
12.5;4 Control;52
12.6;5 End-to-End Lane Keeping System;53
12.7;6 Conclusion;55
12.8;Acknowledgments;56
12.9;References;56
13;6 Basis Autonomous Driving Functionality ``Cruise4U'' Economic Cruise Control (ECC) Based on Series Production Sensors;57
13.1;Abstract;57
13.2;1 Introduction;57
13.3;2 Challenges and Requirements Coming from ECC;58
13.4;3 Example Development Procedure in ECC Scenarios;59
13.5;4 Approaches to Reflecting Distributed Drive Functions in Relation to Highly Automated Driving;60
13.6;5 Providing Domain Control Data for ECC;61
13.7;6 Summary;63
13.8;References;63
14;7 Standardization of Generic Architecture for Autonomous Driving: A Reality Check;64
14.1;Abstract;64
14.2;1 Introduction;65
14.3;2 Layered Decision Making;66
14.3.1;2.1 Motivation;66
14.3.2;2.2 Layered Planning Architecture;67
14.4;3 Standardization Efforts;67
14.4.1;3.1 Generic Vehicle Architecture (GVA);67
14.4.2;3.2 JAUS Standardisation;68
14.4.3;3.3 AUTOSAR;69
14.4.4;3.4 ROS;70
14.5;4 Critical Analysis;72
14.5.1;4.1 Towards a Decisional Architecture Standard?;72
14.5.2;4.2 System Properties and Problems;73
14.5.3;4.3 Algorithm Complexity, Completeness and Determinism;73
14.5.4;4.4 A New Systems Engineering Domain?;74
14.6;5 Conclusion;74
14.7;Acknowledgments;74
14.8;References;75
15;Part IV New Usage of Cars with MoreAutomation;76
16;8 User Experience of Dynamic Carpooling: How to Encourage Drivers and Passengers?;77
16.1;Abstract;77
16.2;1 Introduction;77
16.2.1;1.1 From Planned Carpooling;78
16.2.2;1.2 To Dynamic Carpooling;79
16.3;2 Materials and Methods;80
16.3.1;2.1 A Difficult Assessment of Usage;80
16.3.2;2.2 USA and Europe First Experiments to Test the Feasibility of Published Services;80
16.3.3;2.3 Servicing, Experiments and Wider Deployments in Progress;81
16.3.4;2.4 Lessons Can Be Difficult to Capitalise;81
16.4;3 Results;82
16.4.1;3.1 History of this Dynamic Way of Sharing a Vehicle;82
16.4.2;3.2 The Technical Components of Dynamic Carpooling;82
16.4.3;3.3 The Keystone of This System: The Development of a Critical Mass;83
16.4.4;3.4 Benefits and Limitations of the System;83
16.4.4.1;3.4.1 Users' Benefits;83
16.4.4.2;3.4.2 Users' Limitations;84
16.4.5;3.5 Incentive Measures for the Development of Dynamic Carpooling;84
16.5;4 Discussion;86
16.6;Acknowledgments;86
16.7;References;86
17;9 Decarbonated and Autonomous Vehicles: The Relevant Legal Consensus;88
17.1;Abstract;88
17.2;1 Introduction;88
17.3;2 The Vienna Convention and the Definition of ``Driver'';88
17.4;3 Liability Issues;89
17.4.1;3.1 Product Liability (Article 1386-3 of the French Civil Code);90
17.4.2;3.2 Liability for Road Traffic Accidents;90
17.4.3;3.3 Criminal Law;92
17.5;4 Focus on Foreign Legal Systems;92
18;10 Is the Law Ready for Autonomous Cars?;94
18.1;Abstract;94
18.2;1 Introduction;94
18.3;2 Autonomy Levels and the Human Driver;95
18.3.1;2.1 Vehicle Autonomy;95
18.3.2;2.2 The Human Driver Requirement;96
18.3.3;2.3 Driver's Behavior;97
18.4;3 Distribution of Responsibility;97
18.4.1;3.1 Product Liability;98
18.4.2;3.2 Technical Standards;98
18.4.3;3.3 The Issue of Distribution of Liability;98
18.4.4;3.4 Insurance;99
18.5;4 Data and Cyber Security;100
18.5.1;4.1 Importance of Data for Autonomy;100
18.5.2;4.2 A Threat to Security;101
18.5.3;4.3 A Threat to Privacy;101
18.6;5 Outlook;102
18.7;References;102
19;Part V Standards, Test, Validation;104
20;11 Challenges and Approaches for Testing of Highly Automated Vehicles;105
20.1;Abstract;105
20.2;1 Towards Highly Automated Vehicles (HAV);105
20.3;2 Specific Challenges of HAV;106
20.4;3 Safety Benchmark for HAV;106
20.5;4 Safety Assessment of HAV;107
20.6;5 Accident Types and Testing Approaches;107
20.6.1;5.1 Failure of Components;107
20.6.2;5.2 Behaviour-Dependant Accidents;108
20.6.3;5.3 Deficiencies in Environment Sensing;108
20.6.4;5.4 Deficiencies in Control Algorithms;109
20.6.5;5.5 Faulty Driver and Vehicle Interaction;109
20.7;6 Driving Risk Scenario;110
20.8;7 Controllability;111
20.9;8 Establishing Testing Standards;112
20.9.1;8.1 How Safe Is Safe Enough?;112
20.9.2;8.2 How to Validate the Safety Requirements?;112
20.9.3;8.3 How to Measure and Test Efficiently?;112
20.10;9 Conclusion;112
20.11;Acknowledgments;113
20.12;References;113
21;12 Generic Simulation and Validation Approach for Various Kind of ADAS Systems;114
21.1;Abstract;114
21.2;1 Introduction;114
21.3;2 System Overview;115
21.4;3 CONNECT---Development Environment;115
21.5;4 High Speed ECU Measurement Hardware;118
21.6;5 Rapid Prototyping/Function Bypassing;121
21.7;6 ADAS ECU Road Validation and Data Logging;124
21.8;7 Conclusion;127
22;13 Methodology to Assess and to Validate the Dependability of an Advanced Driver Assistance System (ADAS) Such as Automatic Emergency Braking System (AEBS);128
22.1;Abstract;128
22.2;1 Introduction;128
22.3;2 General Principles for the ISO 26262 Standard;129
22.3.1;2.1 ASIL Ranking/``Pre-existing Risk'';129
22.4;3 Application to the AEBS Function;130
22.4.1;3.1 Product [E x C](Sk);130
22.4.2;3.2 ``Pre-existing Risk'' Assessment;131
22.4.3;3.3 ``Failure Rate Criterion'';132
22.5;4 Validation of the Requirement;133
22.5.1;4.1 Objective for a Driving Validation;133
22.6;5 Conclusion;134
22.7;Acknowledgments;134
22.8;References;134
23;14 Methodology for ADAS Validation: Potential Contribution of Other Scientific Fields Which Have Already Answered the Same Questions;135
23.1;Abstract;135
23.2;1 Introduction;135
23.3;2 Learn and Test Data Bases for Learning-Based Systems;136
23.4;3 Application to ADAS Validation;137
23.4.1;3.1 List of Factors of Variability;137
23.4.2;3.2 How to Take Those Examples;138
23.5;4 Data Analysis and Online Confidence Estimation;138
23.6;5 Conclusion;139
23.7;References;139
24;Part VI CO2 Reduction, Hybridization,Regulation;141
25;15 A Green Light Optimal Speed Advisor for Reduced CO2 Emissions;142
25.1;Abstract;142
25.2;1 Introduction;143
25.3;2 Context;143
25.3.1;2.1 Co-Drive Public Project;143
25.3.2;2.2 V2X Communication;144
25.4;3 GLOSA;145
25.4.1;3.1 Principle and Objectives;145
25.4.2;3.2 Expected Benefits;145
25.4.3;3.3 A GLOSA System Implementation;145
25.5;4 Experimental Results;145
25.5.1;4.1 Equipment;146
25.5.2;4.2 Parameters;148
25.5.3;4.3 Qualitative Results;148
25.5.4;4.4 Quantitative Results;149
25.5.5;4.5 Analysis;150
25.6;5 Conclusion;151
25.7;Acknowledgments;151
25.8;References;151
26;16 Upgrade-E: A Rapid Prototyping Platform for Connected Powertrain Functions and Services;153
26.1;Abstract;153
26.2;1 Introduction;153
26.3;2 Basic Idea Upgrade-E;154
26.4;3 Quality Criteria;155
26.5;4 Software Concept Upgrade-E;156
26.6;5 OSM Navigation/SRTM Elevation Data;157
26.7;6 Simulation;158
26.8;7 Variance in Energy Consumption;158
26.9;8 Quality of the Drive Profiles;159
26.10;9 Quality of the Simulation;160
26.11;10 Conclusion;161
26.12;References;161
27;17 Highly Efficient Electrical Recuperation System;162
27.1;Abstract;162
27.2;1 Introduction;163
27.3;2 Electrical System Architecture;164
27.3.1;2.1 Electrical Background;164
27.3.2;2.2 SPRESSO System;165
27.3.3;2.3 Description;166
27.3.4;2.4 Gasoline Mode;166
27.3.5;2.5 Air Mode;166
27.3.6;2.6 Combined Mode;167
27.4;3 Electrical Behaviour;171
27.4.1;3.1 Road Driving Test;171
27.4.2;3.2 Compliance to Safety Goals;171
27.4.3;3.3 Storage Modules Challenge;171
27.5;4 Perspectives;172
27.6;5 Conclusion;172
27.7;Acknowledgments;172
27.8;References;172
28;Part VII Key Technologies for Modern Cars;174
29;18 Distance Measurement Using Near Infrared Sensors;175
29.1;Abstract;175
29.2;1 Introduction;176
29.2.1;1.1 Triangulation;176
29.2.2;1.2 Interferometric Approach;177
29.2.3;1.3 Travel Time Measurement;177
29.3;2 3D Light Pulse Travel Time Sensor;178
29.4;3 Halios IrDM;181
29.4.1;3.1 Features;181
29.4.2;3.2 Basic Functions;182
29.4.3;3.3 Calibration;183
29.4.3.1;3.3.1 Zero Calibration;183
29.4.3.2;3.3.2 Zero-Meter Calibration;184
29.4.3.3;3.3.3 Modulator Calibration;185
29.4.4;3.4 Measurement;185
29.5;4 Conclusion;187
29.6;References;187
30;19 Trends in Smart Power Technologies for Automotive Applications;188
30.1;Abstract;188
30.2;1 Introduction;189
30.3;2 Silicon Technologies for Automotive Applications;189
30.4;3 BCD-Smart Power Technologies for Automotive Applications;190
30.4.1;3.1 BCD (Bipolar-CMOS-DMOS) Technologies;190
30.4.2;3.2 BCD9s (110 nm) Smart Power Technology for Automotive Applications;191
30.5;4 Fuel Injector Driver Application and Evolution;192
30.6;5 BCD-Smart Power Technologies for HEV Application;193
30.7;6 High Current, High Power, High Energy Capability;196
30.8;7 Conclusions;198
30.9;Acknowledgments;198
30.10;References;198
31;20 Photonic Technologies for the Automotive Industry;200
31.1;Abstract;200
31.2;1 Introduction;200
32;Part VIII Human Factors in Modern Cars;204
33;21 The Smart Connected Seat to Enable Real Life on Board Vehicle Proposition-Renault NEXT TWO (*) Connected Seat Show Case;205
33.1;Abstract;205
33.2;1 Introduction: Faurecia's Smart Connected Seat Show Case---Renault NEXT TWO (*)---Seat Electronics;206
33.3;2 The System Concept and Architecture;206
33.3.1;2.1 First Group of Functions;206
33.4;3 The Faurecia's FIT2122 Intelligence, Seat and Pneumatics ECUs FIT2122 Ready;208
33.4.1;3.1 Faurecia FIT2122 Algorithm Along the Seat Sequence;209
33.4.2;3.2 Faurecia Seat ECU FIT2122 Ready;210
33.4.3;3.3 Faurecia Pneumatics ECU FIT2122 Ready;212
33.5;4 Conclusion;212
33.6;Acknowledgements;212
34;22 The Connected Car and Acceptance of Users High Customer Acceptance Through Functional Integration in HMI Systems;213
34.1;Abstract;213
34.2;1 The Biggest Complaint;213
34.3;2 Manufacturers Have Good Intentions, but Ultimately Their Efforts Yield Poor Results;214
34.4;3 Car Manufacturers Consider Mobility as Their Very Own Ecosystem;214
34.5;4 Connected C@R 2014 Study;215
34.6;5 Crux Data Security;215
34.7;6 A Modern Car Communicates with Its Environment, with Other Vehicles, with the Home;216
34.8;7 Audi Supports Apple's CarPlay;216
34.9;8 What Technology Can Do;217
34.10;9 Conclusion;218
34.11;10 Sources;219
35;23 Introducing User-in-the-Loop Quantitative Testing into Automotive HMI Development Process;220
35.1;Abstract;220
35.2;1 Introduction;221
35.3;2 Vision of the Final Framework;222
35.4;3 Core Technical Solution;225
35.4.1;3.1 Technical Specifications;225
35.4.2;3.2 Enabling Technology;226
35.4.3;3.3 Implementing the Backbone;228
35.5;4 Proof-of-Concept Demonstrator;230
35.5.1;4.1 Demo Scenario;230
35.5.2;4.2 Demonstrator Implementation;231
35.6;5 Conclusion;234
35.7;Acknowledgments;234
36;Part IX Keynote of FIEEC to CESA 3.0Congress on Automotive ElectronicSystems;235
37;24 Electro Technologies Play an Essential Role in Mobility, in the Economy and the Society as the Whole;236
37.1;Abstract;236
37.2;1 Presentation of the FIEEC;236
37.3;2 The Key Role of the Electro-Technologies in the Automotive Industry;237
37.4;3 A Partnership with All Stakeholders;238
Autonomous driving.- Automotive Security Testing - The digital Crash Test.- Model-Based Design for the Development and System-Level Testing of ADAS.- Basis autonomous driving functionality “economic cruise control” based on series sensors.- Standardisation of Generic Architecture for Autonomous Driving: a Reality Check.- User experience of Dynamic Carpooling : which conditions to encourage drivers and passengers?.- Decarbonated and autonomous vehicles - the relevant legal consensus.- Is the law ready for autonomous cars?.