Buch, Englisch, 507 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 779 g
Topology and Fixed Point Theorems Topologie et Théorème du Point Fixe Topologie et Théorème du Point Fixe
Buch, Englisch, 507 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 779 g
Reihe: Springer Collected Works in Mathematics
ISBN: 978-3-642-41847-1
Verlag: Springer
Jean Leray (1906-1998) was one of the great French mathematicians of his century. His life's work can be divided into 3 major areas, reflected in these 3 volumes. Volume I, to which an Introduction has been contributed by A. Borel, covers Leray's seminal work in algebraic topology, where he created sheaf theory and discovered the spectral sequences. Volume II, with an introduction by P. Lax, covers fluid mechanics and partial differential equations. Leray demonstrated the existence of the infinite-time extension of weak solutions of the Navier-Stokes equations; 60 years later this profound work has retained all its impact. Volume III, on the theory of several complex variables, has a long introduction by G. Henkin. Leray's work on the ramified Cauchy problem will stand for centuries alongside the Cauchy-Kovalevska theorem for the unramified case.
He was awarded the Malaxa Prize (1938), the Grand Prix in Mathematical Sciences (1940), the Feltrinelli Prize (1971), the Wolf Prize in Mathematics (1979) and the Lomonosov Gold Medal (1988).
Zielgruppe
Research
Fachgebiete
- Geisteswissenschaften Geschichtswissenschaft Geschichtliche Themen Wissenschafts- und Universitätsgeschichte
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Naturwissenschaften, Formalen Wissenschaften & Technik
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Mathematik Allgemein Geschichte der Mathematik
- Mathematik | Informatik Mathematik Topologie
Weitere Infos & Material
Jean Leray: Selected Papers - Oeuvres Scientifiques.- Vol. 1: Topology and Fixed Point Theorems with an Introduction by Armand Borel.- Vol. 2: Fluid Dynamics and Real Partial Differential Equations with an Introduction by Peter Lax.- Vol. 3: Several Complex Variables and Holomorphic Partial Differential Equations with an Introduction by Guennadi Henkin.