Li / Bertus / Marek | Science of Synthesis Knowledge Updates 2012 Vol. 1 | E-Book | sack.de
E-Book

E-Book, Englisch, 562 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

Li / Bertus / Marek Science of Synthesis Knowledge Updates 2012 Vol. 1

E-Book, Englisch, 562 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

ISBN: 978-3-13-178791-0
Verlag: Thieme
Format: PDF
Kopierschutz: Wasserzeichen (»Systemvoraussetzungen)



The Science of Synthesis Editorial Board,together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that youalways have access to state-of-the-art synthetic methodology.

Content of this volume: Organometallic Complexes of Titanium, Silicon Compounds, Disilenes, Lithium Compounds, 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives, 1,2-Dithiins, Seven-Membered Hetarenes with One Heteroatom, Oxepins, Benzoxepins, Azepines, Cyclopentazepines, and Phosphorus Analogues, Three Carbon-Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives, Heteroatom Analogues of Aldehydes and Ketones.
Li / Bertus / Marek Science of Synthesis Knowledge Updates 2012 Vol. 1 jetzt bestellen!

Zielgruppe


Wissenschaftler

Weitere Infos & Material


1;Science of Synthesis: Knowledge Updates 2012/1;1
1.1;Title page;5
1.2;Imprint;7
1.3;Preface;8
1.4;Abstracts;10
1.5;Overview;18
1.6;Table of Contents;20
1.7;Volume 2: Compounds of Groups 7–3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···);38
1.7.1;2.10 Product Class 10: Organometallic Complexes of Titanium;38
1.7.1.1;2.10.19 Organometallic Complexes of Titanium (Update 1);38
1.7.1.1.1;2.10.19.1 Titanium-Mediated Synthesis of Cyclopropyl Derivatives;38
1.7.1.1.1.1;2.10.19.1.1 Synthesis of Cyclopropanes without Heteroatom Substitution;39
1.7.1.1.1.1.1;2.10.19.1.1.1 Method 1: Synthesis from Thioacetals and Thioethers;39
1.7.1.1.1.1.2;2.10.19.1.1.2 Method 2: Synthesis from 1,1-Dihalides;44
1.7.1.1.1.2;2.10.19.1.2 Synthesis of Cyclopropanols;45
1.7.1.1.1.2.1;2.10.19.1.2.1 Synthesis from Carboxylic Acid Esters;45
1.7.1.1.1.2.1.1;2.10.19.1.2.1.1 Method 1: Use of Grignard Reagents without Ligand Exchange;45
1.7.1.1.1.2.1.2;2.10.19.1.2.1.2 Method 2: Use of Alkenes and Grignard Reagents;50
1.7.1.1.1.2.1.2.1;2.10.19.1.2.1.2.1 Variation 1: Bicyclo[n.1.0]alkan-1-ols from Unsaturated Carboxylic Acid Esters;50
1.7.1.1.1.2.1.2.2;2.10.19.1.2.1.2.2 Variation 2: 2-(Hydroxyalkyl)cyclopropanols from Unsaturated Carboxylic Acid Esters;53
1.7.1.1.1.2.1.2.3;2.10.19.1.2.1.2.3 Variation 3: Cyclopropanols from Carboxylic Acid Esters and Alkenes;54
1.7.1.1.1.2.2;2.10.19.1.2.2 Synthesis from Lactones and Other Acid Derivatives;57
1.7.1.1.1.2.2.1;2.10.19.1.2.2.1 Method 1: Synthesis from Lactones;57
1.7.1.1.1.2.2.2;2.10.19.1.2.2.2 Method 2: Synthesis from Other Acid Derivatives;58
1.7.1.1.1.3;2.10.19.1.3 Synthesis of Cyclopropanone Hemiacetals;59
1.7.1.1.1.3.1;2.10.19.1.3.1 Method 1: Synthesis from Cyclic Carbonates;59
1.7.1.1.1.4;2.10.19.1.4 Synthesis of Cyclopropylamines;60
1.7.1.1.1.4.1;2.10.19.1.4.1 Synthesis from Tertiary Amides;60
1.7.1.1.1.4.1.1;2.10.19.1.4.1.1 Method 1: Use of Grignard Reagents without Ligand Exchange;61
1.7.1.1.1.4.1.2;2.10.19.1.4.1.2 Method 2: Use of Organozinc Reagents without Ligand Exchange;65
1.7.1.1.1.4.1.3;2.10.19.1.4.1.3 Method 3: Use of Alkenes and Grignard Reagents;65
1.7.1.1.1.4.1.3.1;2.10.19.1.4.1.3.1 Variation 1: Bicyclo[n.1.0]alkan-1-amine Derivatives from Unsaturated Carboxylic Amides;66
1.7.1.1.1.4.1.3.2;2.10.19.1.4.1.3.2 Variation 2: 2-Azabicyclo[n.1.0]alkane Derivatives from Unsaturated Carboxylic Amides;68
1.7.1.1.1.4.1.3.3;2.10.19.1.4.1.3.3 Variation 3: Cyclopropylamines from Tertiary Amides and Alkenes;69
1.7.1.1.1.4.2;2.10.19.1.4.2 Synthesis from Nitriles;72
1.7.1.1.1.4.2.1;2.10.19.1.4.2.1 Method 1: Use of Grignard Reagents without Ligand Exchange;72
1.7.1.1.1.4.2.1.1;2.10.19.1.4.2.1.1 Variation 1: Alkylcyclopropylamines from Aliphatic Nitriles;72
1.7.1.1.1.4.2.1.2;2.10.19.1.4.2.1.2 Variation 2: 1-Aryl- and 1-Alkenylcyclopropylamines from Unsaturated Nitriles;78
1.7.1.1.1.4.2.2;2.10.19.1.4.2.2 Method 2: Use of Alkenes and Grignard Reagents;80
1.7.1.1.1.4.2.2.1;2.10.19.1.4.2.2.1 Variation 1: Bicyclic Cyclopropylamines from Unsaturated Nitriles;80
1.7.1.1.1.4.2.2.2;2.10.19.1.4.2.2.2 Variation 2: Cyclopropylamines from Nitriles and Alkenes;81
1.7.1.1.1.4.3;2.10.19.1.4.3 Synthesis from Imides;82
1.7.1.1.1.4.3.1;2.10.19.1.4.3.1 Method 1: Synthesis from Formimides or Cyclic Imides;82
1.8;Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds;88
1.8.1;4.4 Product Class 4: Silicon Compounds;88
1.8.1.1;4.4.1 Product Subclass 1: Disilenes;88
1.8.1.1.1;Synthesis of Product Subclass 1;90
1.8.1.1.1.1;4.4.1.1 Method 1: Synthesis of Acyclic Disilenes;90
1.8.1.1.1.1.1;4.4.1.1.1 Variation 1: Photolysis of Linear Trisilanes;90
1.8.1.1.1.1.2;4.4.1.1.2 Variation 2: Photolysis of Cyclotrisilanes;91
1.8.1.1.1.1.3;4.4.1.1.3 Variation 3: Reductive Dehalogenation of 1,1-Dihalosilanes;91
1.8.1.1.1.1.4;4.4.1.1.4 Variation 4: Reductive Dehalogenation of 1,2-Dihalodisilanes;94
1.8.1.1.1.1.5;4.4.1.1.5 Variation 5: Coupling of a 1,1-Dilithiosilane with Dihalosilanes;94
1.8.1.1.1.1.6;4.4.1.1.6 Variation 6: Coupling of Alkali Metal Disilenides with Electrophiles;95
1.8.1.1.1.1.7;4.4.1.1.7 Variation 7: Addition to Disilynes;97
1.8.1.1.1.1.8;4.4.1.1.8 Variation 8: Other Methods;97
1.8.1.1.1.2;4.4.1.2 Method 2: Synthesis of Tetrasilabutadienes;99
1.8.1.1.1.3;4.4.1.3 Method 3: Synthesis of Cyclic Disilenes;100
1.9;Volume 8: Compounds of Group 1 (Li···Cs);106
1.9.1;8.1 Product Class 1: Lithium Compounds;106
1.9.1.1;8.1.31 Functionalized Organolithiums by Ring Opening of Heterocycles;106
1.9.1.1.1;8.1.31.1 Three-Membered Heterocycles;107
1.9.1.1.1.1;8.1.31.1.1 Method 1: Oxiranes;107
1.9.1.1.1.2;8.1.31.1.2 Method 2: Aziridines;112
1.9.1.1.2;8.1.31.2 Four-Membered Heterocycles;114
1.9.1.1.2.1;8.1.31.2.1 Method 1: Oxetanes;114
1.9.1.1.2.2;8.1.31.2.2 Method 2: Azetidines;118
1.9.1.1.2.3;8.1.31.2.3 Method 3: Thietanes;119
1.9.1.1.3;8.1.31.3 Five-Membered Heterocycles;119
1.9.1.1.3.1;8.1.31.3.1 Method 1: Oxygen-Containing Compounds;121
1.9.1.1.3.1.1;8.1.31.3.1.1 Variation 1: Tetrahydrofurans;121
1.9.1.1.3.1.2;8.1.31.3.1.2 Variation 2: Dioxolanes and Oxazolidines;122
1.9.1.1.3.1.3;8.1.31.3.1.3 Variation 3: Benzo[b]furans;126
1.9.1.1.3.1.4;8.1.31.3.1.4 Variation 4: Phthalans;128
1.9.1.1.3.2;8.1.31.3.2 Method 2: Nitrogen-Containing Compounds: Pyrrolidines;131
1.9.1.1.3.3;8.1.31.3.3 Method 3: Sulfur-Containing Compounds;133
1.9.1.1.4;8.1.31.4 Six-Membered Heterocycles;134
1.9.1.1.4.1;8.1.31.4.1 Method 1: Oxygen-Containing Compounds;134
1.9.1.1.4.1.1;8.1.31.4.1.1 Variation 1: Saturated Oxygen-Containing Heterocycles;134
1.9.1.1.4.1.2;8.1.31.4.1.2 Variation 2: 1-Benzopyrans;135
1.9.1.1.4.1.3;8.1.31.4.1.3 Variation 3: 2-Benzopyrans;137
1.9.1.1.4.2;8.1.31.4.2 Method 2: Nitrogen-Containing Compounds: Tetrahydroisoquinolines;138
1.9.1.1.4.3;8.1.31.4.3 Method 3: Sulfur-Containing Compounds;140
1.9.1.1.5;8.1.31.5 Seven-Membered Heterocycles;141
1.9.1.1.5.1;8.1.31.5.1 Method 1: Dibenzo Oxygen-, Nitrogen-, and Sulfur-Containing Seven-Membered Heterocycles;141
1.9.1.1.5.2;8.1.31.5.2 Method 2: Dinaphtho Oxygen- and Sulfur-Containing Seven-Membered Heterocycles;143
1.9.1.1.6;8.1.31.6 Other Heterocycles;144
1.9.1.1.6.1;8.1.31.6.1 Method 1: Benzodioxins, Benzoxathiins, Dihydrobenzodioxepins, and Dihydronaphthodioxocins;144
1.9.1.1.6.2;8.1.31.6.2 Method 2: Phenoxathiin, Phenothiazine, and Thianthrene;147
1.9.1.2;8.1.32 Syntheses Mediated by a-Lithiated Epoxides and Aziridines;152
1.9.1.2.1;8.1.32.1 Oxiranyllithiums;152
1.9.1.2.1.1;8.1.32.1.1 2-Alkyl-Substituted Oxiranyllithiums;153
1.9.1.2.1.1.1;8.1.32.1.1.1 Method 1: Reactions with Electrophiles;153
1.9.1.2.1.1.1.1;8.1.32.1.1.1.1 Variation 1: Stereospecific Trapping;153
1.9.1.2.1.1.1.2;8.1.32.1.1.1.2 Variation 2: Asymmetric Lithiation and Trapping of meso-Oxiranes;154
1.9.1.2.1.1.1.3;8.1.32.1.1.1.3 Variation 3: Coupling with Boronic Esters: Synthesis of Polyoxygenated Compounds;155
1.9.1.2.1.1.2;8.1.32.1.1.2 Method 2: Enantioselective a-Deprotonation–Rearrangement of meso-Oxiranes;156
1.9.1.2.1.1.2.1;8.1.32.1.1.2.1 Variation 1: Synthesis of Bicyclic Alcohols by Transannular C--H Insertion;156
1.9.1.2.1.1.2.2;8.1.32.1.1.2.2 Variation 2: Synthesis of (–)-Xialenon;157
1.9.1.2.1.1.2.3;8.1.32.1.1.2.3 Variation 3: Effect of Lewis Acids on Transannular C--H Insertion Reactions;157
1.9.1.2.1.1.2.4;8.1.32.1.1.2.4 Variation 4: Enantioselective Rearrangement of exo-Norbornene Oxide to Nortricyclanol;158
1.9.1.2.1.1.2.5;8.1.32.1.1.2.5 Variation 5: Transannular C--H Insertion in Lithiated 7-(tert-Butoxycarbonyl)-7-azanorbornene Oxide;159
1.9.1.2.1.1.3;8.1.32.1.1.3 Method 3: Construction of Nitrogen-Containing Heterocyclic Compounds by Desymmetrization of meso-Epoxides;160
1.9.1.2.1.1.4;8.1.32.1.1.4 Method 4: Synthesis of Alkenes by Reductive Alkylation;161
1.9.1.2.1.1.4.1;8.1.32.1.1.4.1 Variation 1: Synthesis of Enantioenriched Unsaturated Diols;162
1.9.1.2.1.1.4.2;8.1.32.1.1.4.2 Variation 2: Synthesis of Enamines from Terminal Epoxides;163
1.9.1.2.1.1.5;8.1.32.1.1.5 Method 5: Intramolecular Cyclopropanation of Unsaturated Terminal Epoxides (C==C Insertion);164
1.9.1.2.1.1.5.1;8.1.32.1.1.5.1 Variation 1: Stereospecific Synthesis of Bicyclic Alcohols;164
1.9.1.2.1.1.5.2;8.1.32.1.1.5.2 Variation 2: Synthesis of (–)-Sabina Ketone;165
1.9.1.2.1.1.6;8.1.32.1.1.6 Method 6: Isomerization of a-Lithiated Epoxides to Ketones: 1,2-Hydrogen Migration;166
1.9.1.2.1.2;8.1.32.1.2 2-Aryl-Substituted Oxiranyllithiums;167
1.9.1.2.1.2.1;8.1.32.1.2.1 Method 1: Reactions of 2-Phenyloxiran-2-yllithiums;167
1.9.1.2.1.2.1.1;8.1.32.1.2.1.1 Variation 1: Stereospecific Trapping with Electrophiles;167
1.9.1.2.1.2.1.2;8.1.32.1.2.1.2 Variation 2: Stereoselective Synthesis of Antifungal Agents;168
1.9.1.2.1.2.2;8.1.32.1.2.2 Method 2: Reactions of 3-Substituted 2-Phenyloxiran-2-yllithiums;169
1.9.1.2.1.2.2.1;8.1.32.1.2.2.1 Variation 1: Of 3-Methyl-2-phenyloxiran-2-yllithiums;169
1.9.1.2.1.2.2.2;8.1.32.1.2.2.2 Variation 2: Of 2-Lithiated 2,3-Diphenyloxiranes;169
1.9.1.2.1.2.3;8.1.32.1.2.3 Method 3: Reactions of 2-Aryloxiran-2-yllithiums;171
1.9.1.2.1.2.4;8.1.32.1.2.4 Method 4: Stereoselective Synthesis of Cyclopropanes;173
1.9.1.2.1.2.5;8.1.32.1.2.5 Method 5: Stereoselective Synthesis of ß,.-Epoxyhydroxylamines and 4-(Hydroxyalkyl)-1,2-oxazetidines;174
1.9.1.2.1.2.6;8.1.32.1.2.6 Method 6: Stereocontrolled Synthesis of 1,2-Diols by Homologation of Boronic Esters with Lithiated 2-Phenyloxirane;175
1.9.1.2.1.2.7;8.1.32.1.2.7 Method 7: Oxiranyl Anion Methodology Using Microflow Systems;177
1.9.1.2.1.3;8.1.32.1.3 Lithiated Dihydrooxazol-2-yloxiranes;178
1.9.1.2.1.3.1;8.1.32.1.3.1 Method 1: Reactions of 2-Lithiated 2-(4,5-Dihydrooxazol-2-yl)oxiranes;178
1.9.1.2.1.3.1.1;8.1.32.1.3.1.1 Variation 1: Configurational Stability of a-Lithiated (4,5-Dihydrooxazol-2-yl)oxiranes: Trapping with Electrophiles;178
1.9.1.2.1.3.1.2;8.1.32.1.3.1.2 Variation 2: Synthesis of 2-Acyldihydrooxazoles;179
1.9.1.2.1.3.1.3;8.1.32.1.3.1.3 Variation 3: Synthesis of Cyclopropane-Fused .-Lactones;180
1.9.1.2.1.3.1.4;8.1.32.1.3.1.4 Variation 4: Synthesis of a-Epoxy-ß-amino Acids;181
1.9.1.2.1.3.2;8.1.32.1.3.2 Method 2: Reactions of 2-Lithiated 3-(4,5-Dihydrooxazol-2-yl)oxiranes;184
1.9.1.2.1.3.2.1;8.1.32.1.3.2.1 Variation 1: Configurational Stability of 2-Lithiated 3-(4,5-Dihydrooxazol-2-yl)oxiranes: Trapping with Electrophiles;184
1.9.1.2.1.3.2.2;8.1.32.1.3.2.2 Variation 2: Synthesis of a,ß-Epoxy-.-butyrolactones;185
1.9.1.2.1.3.2.3;8.1.32.1.3.2.3 Variation 3: Synthesis of a,ß-Epoxy-.-amino Acids and a,ß-Epoxy-.-butyrolactams;186
1.9.1.2.1.3.3;8.1.32.1.3.3 Method 3: 2-Lithiation of Terminal 3-(4,5-Dihydrooxazol-2-yl)oxiranes;189
1.9.1.2.1.4;8.1.32.1.4 2-Trifluoromethyl-Stabilized Oxiranyllithium;190
1.9.1.2.1.4.1;8.1.32.1.4.1 Method 1: 2-(Trifluoromethyl)oxiranyllithium: Stereospecific Trapping with Electrophiles;190
1.9.1.2.1.4.2;8.1.32.1.4.2 Method 2: 2-(Trifluoromethyl)oxiranyllithium as Precursor of the Oxiranylzinc;190
1.9.1.2.1.5;8.1.32.1.5 Lactone-Derived Oxiranyllithiums;191
1.9.1.2.1.5.1;8.1.32.1.5.1 Method 1: Reactions of Oxiranyllithiums Derived from a,ß-Epoxy-.-butyrolactones;191
1.9.1.2.1.6;8.1.32.1.6 Silyloxiranyllithiums;193
1.9.1.2.1.6.1;8.1.32.1.6.1 Method 1: Lithiation of 3-Vinyloxiran-2-ylsilanes;193
1.9.1.2.1.6.2;8.1.32.1.6.2 Method 2: Lithiation of 3-Alkyloxiran-2-ylsilanes;194
1.9.1.2.1.7;8.1.32.1.7 2-Sulfonyloxiranyllithiums;195
1.9.1.2.1.7.1;8.1.32.1.7.1 Method 1: 2-Sulfonyloxiranyllithiums: Configurational Stability and Trapping with Electrophiles;195
1.9.1.2.1.7.2;8.1.32.1.7.2 Method 2: Construction of Polycyclic Ethers;196
1.9.1.2.1.8;8.1.32.1.8 2-Lithiated 2-(Benzotriazol-1-yl)oxiranes;198
1.9.1.2.1.8.1;8.1.32.1.8.1 Method 1: Synthesis of 2-(Benzotriazol-1-yl)oxiranyllithiums with Subsequent Trapping;198
1.9.1.2.1.9;8.1.32.1.9 2-Lithiated 2-(Benzothiazol-2-yl)oxiranes;198
1.9.1.2.1.9.1;8.1.32.1.9.1 Method 1: Synthesis of 2-(Benzothiazol-2-yl)oxiranyllithiums with Subsequent Trapping;198
1.9.1.2.1.10;8.1.32.1.10 Oxiranyllithiums by Transmetalation;200
1.9.1.2.1.10.1;8.1.32.1.10.1 Method 1: Lithium–Tin Transmetalation;200
1.9.1.2.1.10.2;8.1.32.1.10.2 Method 2: Lithium–Aluminum and Lithium–Zirconium Transmetalation;200
1.9.1.2.1.10.2.1;8.1.32.1.10.2.1 Variation 1: Synthesis of Alkylated (Triphenylsilyl)alkenes: Reaction of a 2-Lithiated 2-(Triphenylsilyl)oxirane with Organoaluminum Reagents;200
1.9.1.2.1.10.2.2;8.1.32.1.10.2.2 Variation 2: Insertion of Metalated Epoxides into Zirconacycles;201
1.9.1.2.1.10.2.3;8.1.32.1.10.2.3 Variation 3: Insertion of Metalated Epoxynitriles into Chlorobis(.5-cyclopentadienyl)organozirconium Reagents;202
1.9.1.2.1.10.2.4;8.1.32.1.10.2.4 Variation 4: Insertion of 2-Lithiated 2-(Phenylsulfonyl)oxiranes into Alkenylchlorobis(.5-cyclopentadienyl)zirconium Reagents;203
1.9.1.2.1.11;8.1.32.1.11 Remotely Stabilized Lithiated Epoxides;205
1.9.1.2.1.11.1;8.1.32.1.11.1 Method 1: Remotely Stabilized Lithiated Epoxides: Reactions with Aldehydes;205
1.9.1.2.1.11.2;8.1.32.1.11.2 Method 2: Synthesis of Xylobovide;206
1.9.1.2.2;8.1.32.2 a-Lithiated Aziridines;207
1.9.1.2.2.1;8.1.32.2.1 Lithiation–Trapping Sequence of Aziridines with an Electron-Withdrawing Group at the Carbon Atom;208
1.9.1.2.2.1.1;8.1.32.2.1.1 Method 1: Synthesis of 1-Alkylaziridine-2-carboxylates;208
1.9.1.2.2.1.2;8.1.32.2.1.2 Method 2: Synthesis of 1-Alkylaziridine-2-carbothioates;209
1.9.1.2.2.1.3;8.1.32.2.1.3 Method 3: Reactions of 2-(4,5-Dihydrooxazol-2-yl)-Substituted 1-Phenylaziridines;210
1.9.1.2.2.1.4;8.1.32.2.1.4 Method 4: Reactions of 2,3-Dihetaryl-Substituted 1-Phenylaziridines;211
1.9.1.2.2.1.5;8.1.32.2.1.5 Method 5: Reactions of 2-(4,5-Dihydrooxazol-2-yl)-Substituted 1-Tritylaziridines;213
1.9.1.2.2.1.5.1;8.1.32.2.1.5.1 Variation 1: Synthesis of N-Tritylepimino-.-butyrolactones;214
1.9.1.2.2.1.6;8.1.32.2.1.6 Method 6: Reactions of 2-(4,5-Dihydrooxazol-2-yl)-Substituted 1-Benzylaziridines;215
1.9.1.2.2.1.7;8.1.32.2.1.7 Method 7: Reactions of 2-(4,5-Dihydrooxazol-2-yl)-Substituted 1-(1-Phenylethyl)aziridines;216
1.9.1.2.2.1.8;8.1.32.2.1.8 Method 8: Synthesis of C-Substituted 1-Phenyl-2-sulfonylaziridines;218
1.9.1.2.2.2;8.1.32.2.2 Lithiation of Aziridines with an Electron-Withdrawing Group at Nitrogen;219
1.9.1.2.2.2.1;8.1.32.2.2.1 Method 1: C-Alkylation of 1-(tert-Butylsulfonyl)-2-phenylaziridine;219
1.9.1.2.2.2.1.1;8.1.32.2.2.1.1 Variation 1: Synthesis of 2-Substituted 1-(tert-Butylsulfonyl)-2-phenylaziridines Using Microreactor Technology;220
1.9.1.2.2.2.1.2;8.1.32.2.2.1.2 Variation 2: Synthesis of (tert-Butylsulfonyl)amino Alcohols;221
1.9.1.2.2.2.2;8.1.32.2.2.2 Method 2: Synthesis of 2-Alkyl-Substituted 1-(tert-Butylsulfonyl)-3-(trimethylsilyl)aziridines;222
1.9.1.2.2.2.3;8.1.32.2.2.3 Method 3: Synthesis of 2-Substituted 1-(tert-Butylsulfonyl)aziridines;223
1.9.1.2.2.2.3.1;8.1.32.2.2.3.1 Variation 1: Synthesis of 2-Substituted 1-(tert-Butylsulfonyl)aziridines Using Microreactor Technology;224
1.9.1.2.2.2.4;8.1.32.2.2.4 Method 4: Synthesis of trans-2,3-Disubstituted 1-(tert-Butylsulfonyl)aziridines;225
1.9.1.2.2.2.5;8.1.32.2.2.5 Method 5: Synthesis of C-Substituted 1-(2,4,6-Triisopropylphenylsulfonyl)aziridines;226
1.9.1.2.2.2.6;8.1.32.2.2.6 Method 6: Reductive Alkylation (or Alkylative Ring Opening) of 1-Sulfonylaziridinyllithiums;228
1.9.1.2.2.2.6.1;8.1.32.2.2.6.1 Variation 1: Synthesis of Allylic Sulfonamides;228
1.9.1.2.2.2.6.2;8.1.32.2.2.6.2 Variation 2: Synthesis of Alkynylamines;230
1.9.1.2.2.2.6.3;8.1.32.2.2.6.3 Variation 3: Allylic Amino Alcohols and Amino Ethers by Organolithium-Induced Alkylative Ring Opening of 1-Sulfonyl-Protected Aziridinyl Ethers;232
1.9.1.2.2.2.6.4;8.1.32.2.2.6.4 Variation 4: Allylic Amino Alcohols and Amino Ethers by Organolithium-Induced Alkylative Ring Opening of 1,4-Dimethoxybut-2-ene-Derived Aziridines;233
1.9.1.2.2.2.7;8.1.32.2.2.7 Method 7: Eliminative Dimerization of Lithiated 1-(tert-Butylsulfonyl)-aziridines;234
1.9.1.2.2.2.7.1;8.1.32.2.2.7.1 Variation 1: Synthesis of 2-Ene-1,4-diamines;234
1.9.1.2.2.2.8;8.1.32.2.2.8 Method 8: Intramolecular Cyclopropanation of Lithiated 1-(tert-Butylsulfonyl)aziridines;235
1.9.1.2.2.2.8.1;8.1.32.2.2.8.1 Variation 1: Synthesis of 2-Aminobicyclo[3.1.0]hexanes;235
1.9.1.2.2.2.9;8.1.32.2.2.9 Method 9: Lithiation of 1-(tert-Butoxycarbonyl)aziridines;237
1.9.1.2.2.2.9.1;8.1.32.2.2.9.1 Variation 1: Synthesis of 2-Silylaziridines;237
1.9.1.2.2.2.9.2;8.1.32.2.2.9.2 Variation 2: Synthesis of trans-Configured Aziridine-2-carboxylates;237
1.9.1.2.2.2.9.3;8.1.32.2.2.9.3 Variation 3: Synthesis of trans-Configured Aziridin-2-ylphosphonates;239
1.9.1.2.2.2.9.4;8.1.32.2.2.9.4 Variation 4: Synthesis of N-tert-Butoxycarbonyl 1,2-Amino Alcohols;239
1.9.1.2.2.3;8.1.32.2.3 Lithiation of Aziridines with an Electron-Donating Group on Nitrogen;241
1.9.1.2.2.3.1;8.1.32.2.3.1 Method 1: Synthesis of cis- and trans-Configured C-Substituted 1-Alkyl-2,3-diphenylaziridines;241
1.9.1.2.2.3.2;8.1.32.2.3.2 Method 2: Synthesis of C-Substituted 1-Alkyl-2-methyleneaziridines;242
1.9.1.2.2.3.2.1;8.1.32.2.3.2.1 Variation 1: Synthesis of Chiral Nonracemic C-Substituted 1-Alkyl-2-methyleneaziridines;243
1.9.1.2.2.3.3;8.1.32.2.3.3 Method 3: Synthesis of C-Substituted Aziridine–Borane Complexes;244
1.9.1.2.2.3.3.1;8.1.32.2.3.3.1 Variation 1: Of 1-[2-(tert-Butyldimethylsiloxy)ethyl]aziridine–Borane Complexes;244
1.9.1.2.2.3.3.2;8.1.32.2.3.3.2 Variation 2: Of 1-Alkyl-2-phenylaziridine–Borane Complexes;246
1.9.1.3;8.1.33 Transition-Metal-Catalyzed Carbon--Carbon Bond Formation with Organolithiums;252
1.9.1.3.1;8.1.33.1 Copper-Catalyzed Reactions;252
1.9.1.3.1.1;8.1.33.1.1 Method 1: Copper-Catalyzed Conjugate Addition;253
1.9.1.3.1.2;8.1.33.1.2 Method 2: Copper-Catalyzed Alkylation;254
1.9.1.3.1.2.1;8.1.33.1.2.1 Variation 1: Copper-Catalyzed Asymmetric Allylation;254
1.9.1.3.1.3;8.1.33.1.3 Method 3: Copper-Catalyzed Coupling of Organolithium Reagents with a-Lithiated Cyclic Enol Ethers;256
1.9.1.3.2;8.1.33.2 Palladium-Catalyzed Reactions;256
1.9.1.3.2.1;8.1.33.2.1 Method 1: Palladium-Catalyzed Cross-Coupling Reactions with Aryl and Vinyl Halides;257
1.9.1.3.2.2;8.1.33.2.2 Method 2: Palladium-Catalyzed Coupling Reaction of Aryllithium Reagents with 1-Bromo-2-methylbut-3-en-2-ol;258
1.9.1.3.3;8.1.33.3 Iron-Catalyzed Reactions;259
1.9.1.3.3.1;8.1.33.3.1 Method 1: Iron-Catalyzed Cross-Coupling Reactions;259
1.9.1.3.3.2;8.1.33.3.2 Method 2: Iron-Catalyzed Carbolithiation of Alkynes;260
1.10;Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms;264
1.10.1;16.2 Product Class 2: 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives;264
1.10.1.1;16.2.4 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives;264
1.10.1.1.1;16.2.4.1 Synthesis by Ring-Closure Reactions;264
1.10.1.1.1.1;16.2.4.1.1 By Formation of Two O--C Bonds;264
1.10.1.1.1.1.1;16.2.4.1.1.1 Fragments O--C--C--O and C--C;264
1.10.1.1.1.1.1.1;16.2.4.1.1.1.1 Method 1: Dibenzo[b,e][1,4]dioxins by Base-Induced Coupling of Benzene-1,2-diols with Activated Fluorobenzenes;264
1.10.1.1.1.1.2;16.2.4.1.1.2 Fragments O--C--C and O--C--C;266
1.10.1.1.1.1.2.1;16.2.4.1.1.2.1 Method 1: Substituted 1,4-Dioxins by Reaction of Methyl 3-Chloro-2-oxo-3-phenylpropanoate with Potassium Phthalimide or Sodium Imidazolide;266
1.10.1.1.1.2;16.2.4.1.2 By Formation of One C--C Bond;267
1.10.1.1.1.2.1;16.2.4.1.2.1 Fragment C--O--C--C--O--C;267
1.10.1.1.1.2.1.1;16.2.4.1.2.1.1 Method 1: 1,4-Benzodioxins by Ring-Closing Metathesis of Divinyl Ethers;267
1.10.1.1.2;16.2.4.2 Aromatization;268
1.10.1.1.2.1;16.2.4.2.1 Method 1: 1,4-Benzodioxins by Isomerization of Exocyclic Alkenes;268
1.10.1.1.2.2;16.2.4.2.2 Method 2: Dibenzo[b,e][1,4]dioxins from the Diels–Alder Reactions of 1,4-Benzodioxin and Benzo[b]furo[3,4-e][1,4]dioxins;269
1.10.1.1.3;16.2.4.3 Synthesis by Substituent Modification;272
1.10.1.1.3.1;16.2.4.3.1 Substitution of Existing Substituents;272
1.10.1.1.3.1.1;16.2.4.3.1.1 Of Hydrogen;272
1.10.1.1.3.1.1.1;16.2.4.3.1.1.1 Method 1: Vilsmeier Reaction of 2-Phenyl-1,4-benzodioxin;272
1.10.1.1.3.1.1.2;16.2.4.3.1.1.2 Method 2: Diels–Alder Reaction of 2,2'-Bi-1,4-benzodioxin;272
1.10.1.1.3.1.2;16.2.4.3.1.2 Of Metals;273
1.10.1.1.3.1.2.1;16.2.4.3.1.2.1 Method 1: Stille Coupling of 2-(Trimethylstannyl)-1,4-benzodioxin with a Bromoalkene;273
1.10.1.1.3.1.3;16.2.4.3.1.3 Of Halogens;275
1.10.1.1.3.1.3.1;16.2.4.3.1.3.1 Method 1: Alkylation of 2-Bromo-1,4-benzodioxin by Lithium–Halogen Exchange;275
1.10.1.1.3.2;16.2.4.3.2 Modification of Substituents;275
1.10.1.1.3.2.1;16.2.4.3.2.1 Method 1: Alkylation of 1,4-Benzodioxin-6,7-dicarbaldehyde;275
1.10.2;16.3 Product Class 3: 1,2-Dithiins;278
1.10.2.1;16.3.5 1,2-Dithiins;278
1.10.2.1.1;16.3.5.1 Synthesis by Ring-Closure Reactions;281
1.10.2.1.1.1;16.3.5.1.1 By Formation of One S--S and Two S--C Bonds;281
1.10.2.1.1.1.1;16.3.5.1.1.1 Fragment C--C--C--C and Two S Fragments;281
1.10.2.1.1.1.1.1;16.3.5.1.1.1.1 Method 1: Addition of Sulfur to 6-Nitroperylo[1,12-bcd]thiophene;281
1.10.2.1.1.1.1.2;16.3.5.1.1.1.2 Method 2: Addition of Sulfur to 2-(Trimethylsiloxy)buta-1,3-diene;281
1.10.2.1.1.2;16.3.5.1.2 By Formation of One S--S and One S--C Bond;282
1.10.2.1.1.2.1;16.3.5.1.2.1 Fragments S--C--C--C--C and S;282
1.10.2.1.1.2.1.1;16.3.5.1.2.1.1 Method 1: Reaction of 2-(2-Phenylvinyl)-3-vinylthiirane Promoted by Acetonitrile(pentacarbonyl)tungsten(0);282
1.10.2.1.1.3;16.3.5.1.3 By Formation of One S--S and One C--C Bond;282
1.10.2.1.1.3.1;16.3.5.1.3.1 Fragments S--C--C--C and S--C;282
1.10.2.1.1.3.1.1;16.3.5.1.3.1.1 Method 1: Thermal Dimerization of a,ß-Unsaturated ß-Arylsulfanyl Thioketones;282
1.10.2.1.1.3.1.2;16.3.5.1.3.1.2 Method 2: Cobalt(II)-Mediated Dimerization of a,ß-Unsaturated Thioacylsilanes;283
1.10.2.1.1.3.1.3;16.3.5.1.3.1.3 Method 3: Dimerization via Diels–Alder Reaction of Thioaldehydes;283
1.10.2.1.1.3.2;16.3.5.1.3.2 Fragments S--C--C and S--C--C;284
1.10.2.1.1.3.2.1;16.3.5.1.3.2.1 Method 1: Thionation–Dimerization of 1,3-Dihydro-2H-indol-2-one;284
1.10.2.1.1.3.2.2;16.3.5.1.3.2.2 Method 2: Manganese(IV) Oxide Promoted Oxidative Dimerization;285
1.10.2.1.1.4;16.3.5.1.4 By Formation of One S--S Bond;285
1.10.2.1.1.4.1;16.3.5.1.4.1 Fragment S--C--C--C--C--S;285
1.10.2.1.1.4.1.1;16.3.5.1.4.1.1 Method 1: Polycyclization of Diynes;285
1.10.2.1.1.4.1.2;16.3.5.1.4.1.2 Method 2: N-Bromosuccinimide-Induced Ring Formation;286
1.10.2.1.1.4.1.3;16.3.5.1.4.1.3 Method 3: Cyclization of Dibromides Promoted by Phase-Transfer Catalysts;287
1.10.2.1.1.4.1.4;16.3.5.1.4.1.4 Method 4: Cyclization of Dichlorides by Tandem Michael–Nucleophilic Substitution Processes;288
1.10.2.1.1.5;16.3.5.1.5 By Formation of One C--C Bond;289
1.10.2.1.1.5.1;16.3.5.1.5.1 Fragment C--C--S--S--C--C;289
1.10.2.1.1.5.1.1;16.3.5.1.5.1.1 Method 1: Cyclization via Ring-Closing Metathesis of Alkenes;289
1.10.2.1.2;16.3.5.2 Synthesis by Ring Transformation;289
1.10.2.1.2.1;16.3.5.2.1 Method 1: Ring Contraction Promoted by Photolysis;289
1.10.2.1.3;16.3.5.3 Synthesis by Other Methods;290
1.10.2.1.3.1;16.3.5.3.1 Method 1: Rearrangement Promoted by Photolysis;290
1.10.2.1.4;16.3.5.4 Applications of 1,2-Dithiins in Organic Synthesis;290
1.10.2.1.4.1;16.3.5.4.1 Reaction with Transition Metals;291
1.10.2.1.4.1.1;16.3.5.4.1.1 Method 1: Reaction with Organometallic Complexes;291
1.10.2.1.4.1.2;16.3.5.4.1.2 Method 2: Reaction with Copper Metal;292
1.10.2.1.4.2;16.3.5.4.2 Reaction with Lewis Acids;292
1.10.2.1.4.2.1;16.3.5.4.2.1 Method 1: Reaction Promoted by Aluminum Trichloride;292
1.10.2.1.4.2.2;16.3.5.4.2.2 Method 2: Reaction Promoted by Boron Trifluoride;293
1.10.2.1.4.3;16.3.5.4.3 Reaction with Diazo Compounds;294
1.10.2.1.4.3.1;16.3.5.4.3.1 Method 1: Reaction Promoted by Rhodium(II) Acetate;294
1.10.2.1.4.3.2;16.3.5.4.3.2 Method 2: Reaction Promoted by Copper(I) Chloride;295
1.10.2.1.4.4;16.3.5.4.4 Reaction with Alkynes;296
1.10.2.1.4.4.1;16.3.5.4.4.1 Method 1: Reaction Promoted by Bis(acetylacetonato)nickel(II);296
1.10.2.1.4.5;16.3.5.4.5 Reaction with Enzymes;297
1.10.2.1.4.5.1;16.3.5.4.5.1 Method 1: Reaction with a Toluene Dioxygenase;297
1.11;Volume 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles;300
1.11.1;17.4 Product Class 4: Seven-Membered Hetarenes with One Heteroatom;300
1.11.1.1;17.4.1.5 Oxepins;300
1.11.1.1.1;17.4.1.5.1 Synthesis by Ring-Closure Reactions;300
1.11.1.1.1.1;17.4.1.5.1.1 By Formation of One O--C and One C--C Bond;300
1.11.1.1.1.1.1;17.4.1.5.1.1.1 Method 1: From a 3-(Dimethylamino)-1-phenylprop-2-en-1-one and Arylidenemalononitriles;300
1.11.1.1.2;17.4.1.5.2 Synthesis by Ring Transformation;300
1.11.1.1.2.1;17.4.1.5.2.1 Method 1: By Valence Isomerization of 3-Oxaquadricyclanes;300
1.11.1.1.2.2;17.4.1.5.2.2 Method 2: By Valence Isomerization of 7-Oxanorbornadienes;301
1.11.1.1.2.3;17.4.1.5.2.3 Method 3: By Ring Enlargement of Furans with Diethyl Acetylenedicarboxylate;302
1.11.1.1.2.4;17.4.1.5.2.4 Method 4: By Valence Isomerization of Benzene Oxide;302
1.11.1.1.2.5;17.4.1.5.2.5 Method 5: By Ring Enlargement of a 2-[(Prop-2-ynyloxy)methyl]furan;303
1.11.1.1.2.6;17.4.1.5.2.6 Method 6: By Ring Enlargement of a Cyclohexa-2,5-diene-1,4-diol via SN2' Reaction;304
1.11.1.1.3;17.4.1.5.3 Aromatization;304
1.11.1.1.3.1;17.4.1.5.3.1 Method 1: By Dehydrogenation;304
1.11.1.2;17.4.2.5 Benzoxepins;308
1.11.1.2.1;17.4.2.5.1 Synthesis by Ring-Closure Reactions;308
1.11.1.2.1.1;17.4.2.5.1.1 By Formation of One O--C and Two C--C Bonds;308
1.11.1.2.1.1.1;17.4.2.5.1.1.1 Method 1: From a Betaine and Diethyl Acetylenedicarboxylate;308
1.11.1.2.1.2;17.4.2.5.1.2 By Formation of One O--C and One C--C Bond;308
1.11.1.2.1.2.1;17.4.2.5.1.2.1 Method 1: From Dinitrotoluenes and Salicylaldehydes;308
1.11.1.2.1.3;17.4.2.5.1.3 By Formation of Two C--C Bonds;310
1.11.1.2.1.3.1;17.4.2.5.1.3.1 Method 1: By Annulation of a Boronic Acid with Dimethyl Acetylenedicarboxylate;310
1.11.1.2.1.4;17.4.2.5.1.4 By Formation of One O--C Bond;311
1.11.1.2.1.4.1;17.4.2.5.1.4.1 Method 1: From 2-Alkyl-3-[2-(iodoethynyl)phenyl]oxiranes;311
1.11.1.2.1.4.2;17.4.2.5.1.4.2 Method 2: By Cyclization of 2-[2-(2-Bromophenyl)vinyl]phenols and Related Compounds;312
1.11.1.2.1.5;17.4.2.5.1.5 By Formation of One C--C Bond;314
1.11.1.2.1.5.1;17.4.2.5.1.5.1 Method 1: By Base-Catalyzed Cyclocondensation of Methyl (2E)-4-(2-Formylphenoxy)but-2-enoate;314
1.11.1.2.2;17.4.2.5.2 Synthesis by Ring Transformation;315
1.11.1.2.2.1;17.4.2.5.2.1 By Ring Enlargement;315
1.11.1.2.2.1.1;17.4.2.5.2.1.1 Method 1: Of a Benzofuran with 1-Phenyl-2-tosylacetylene;315
1.11.1.2.2.1.2;17.4.2.5.2.1.2 Method 2: Of Xanthenes by Dehydration;315
1.11.1.2.2.1.3;17.4.2.5.2.1.3 Method 3: Of 2-Diazo-3',6'-bis(diethylamino)spiro[indene-1,9'-xanthen]-3(2H)-one (Rhodamine BBN);317
1.11.1.2.2.1.4;17.4.2.5.2.1.4 Method 4: Of a Dihydrofuran by Rearrangement;318
1.11.1.2.2.1.5;17.4.2.5.2.1.5 Method 5: Of Tetrahydrobenzo[b]cyclopropa[e]pyran-1-carboxylates;319
1.11.1.2.3;17.4.2.5.3 Synthesis by Substituent Modification;320
1.11.1.2.3.1;17.4.2.5.3.1 Substitution of Existing Substituents;320
1.11.1.2.3.1.1;17.4.2.5.3.1.1 Method 1: Condensation of Dibenz[b,f]oxepin-10(11H)-one with 3-Methylbut-2-enal;320
1.11.1.2.3.1.2;17.4.2.5.3.1.2 Method 2: Vilsmeier-Type Chloroformylation of Dibenz[b,f]oxepin-10(11H)-ones;320
1.11.1.2.3.1.3;17.4.2.5.3.1.3 Method 3: Reaction of Dibenz[b,f]oxepin-10(11H)-one with Base and Carbon Disulfide/Iodomethane or Dimethyl Trithiocarbonate; Annulation of the Products;321
1.11.1.2.3.1.4;17.4.2.5.3.1.4 Method 4: 1H-Dibenz[2,3:6,7]oxepino[4,5-b]pyrroles by Annulation of 11-(Hydrazonoethylidene)dibenz[b,f]oxepin-10-ones;327
1.11.1.2.3.1.5;17.4.2.5.3.1.5 Method 5: 1H-Dibenz[2,3:6,7]oxepino[4,5-d]imidazoles by Oxidation/Annulation of Dibenz[b,f]oxepin-10(11H)-ones;328
1.11.1.3;17.4.5.5 Azepines, Cyclopentazepines, and Phosphorus Analogues;332
1.11.1.3.1;17.4.5.5.1 Synthesis by Ring-Closure Reactions;332
1.11.1.3.1.1;17.4.5.5.1.1 By Formation of One C--C Bond;332
1.11.1.3.1.1.1;17.4.5.5.1.1.1 Method 1: Azepine Formation via Copper-Mediated Cyclization of 2-Azahepta-2,4-dien-6-ynyl Anions;332
1.11.1.3.1.1.2;17.4.5.5.1.1.2 Method 2: 3H-Azepines via Deprotonation of 2-Aza-1,3,5-trienes;333
1.11.1.3.2;17.4.5.5.2 Synthesis by Ring Transformation;334
1.11.1.3.2.1;17.4.5.5.2.1 By Ring Enlargement;334
1.11.1.3.2.1.1;17.4.5.5.2.1.1 Of Five-Membered Heterocycles;334
1.11.1.3.2.1.1.1;17.4.5.5.2.1.1.1 Method 1: Thermal Isomerization of 3-Azaquadricyclanes;334
1.11.1.3.2.1.1.1.1;17.4.5.5.2.1.1.1.1 Variation 1: Thermal Isomerization of a Cyclobutane 3-Azaquadricyclane;334
1.11.1.3.2.1.2;17.4.5.5.2.1.2 Of Six-Membered Arenes;335
1.11.1.3.2.1.2.1;17.4.5.5.2.1.2.1 Method 1: Intramolecular Insertion of Arylnitrenes;335
1.11.1.3.2.1.2.1.1;17.4.5.5.2.1.2.1.1 Variation 1: Photolytic Decomposition of Aryl Azides;335
1.11.1.3.2.1.2.1.2;17.4.5.5.2.1.2.1.2 Variation 2: Rearrangement of Nitroarenes;337
1.11.1.3.3;17.4.5.5.3 Synthesis by Substituent Modification;338
1.11.1.3.3.1;17.4.5.5.3.1 Substitution of Existing Substituents;338
1.11.1.3.3.1.1;17.4.5.5.3.1.1 Of Hydrogen;338
1.11.1.3.3.1.1.1;17.4.5.5.3.1.1.1 Method 1: Tautomerization;338
1.11.1.3.3.1.1.1.1;17.4.5.5.3.1.1.1.1 Variation 1: Rearrangement of 2H- to 3H-Azepines;338
1.11.1.3.3.1.1.2;17.4.5.5.3.1.1.2 Method 2: C-Halogenation;339
1.11.1.3.3.1.1.2.1;17.4.5.5.3.1.1.2.1 Variation 1: C-Halogenation with N-Bromosuccinimide;339
1.11.1.3.3.1.1.3;17.4.5.5.3.1.1.3 Method 3: C-Alkylsulfanylation;339
1.11.1.3.3.1.1.4;17.4.5.5.3.1.1.4 Method 4: C-Amination;340
1.11.1.3.3.1.1.5;17.4.5.5.3.1.1.5 Method 5: C-Alkoxylation;341
1.11.1.3.3.1.2;17.4.5.5.3.1.2 Of Heteroatoms;342
1.11.1.3.3.1.2.1;17.4.5.5.3.1.2.1 Method 1: Of Alkoxy Groups;342
1.11.1.3.3.1.2.1.1;17.4.5.5.3.1.2.1.1 Variation 1: Of Activated Organooxy Groups;344
1.11.1.4;17.4.6.10 Benzazepines and Their Group 15 Analogues;348
1.11.1.4.1;17.4.6.10.1 1H-1-Benzazepines;349
1.11.1.4.1.1;17.4.6.10.1.1 Synthesis by Ring-Closure Reactions;349
1.11.1.4.1.1.1;17.4.6.10.1.1.1 By Formation of Two C--C Bonds and One C--N Bond;349
1.11.1.4.1.1.1.1;17.4.6.10.1.1.1.1 Method 1: By Condensation between 2-Fluoroaniline and Aryl Methyl Ketones;349
1.11.1.4.1.1.2;17.4.6.10.1.1.2 By Formation of One N--C and One C--C Bond;349
1.11.1.4.1.1.2.1;17.4.6.10.1.1.2.1 Method 1: From 5-[(E)-(2-Dimethylamino)vinyl]-2,1,3-benzoselenadiazol-4-amine;349
1.11.1.4.1.1.3;17.4.6.10.1.1.3 By Formation of Two C--C Bonds;350
1.11.1.4.1.1.3.1;17.4.6.10.1.1.3.1 Method 1: By Thermal Cycloaddition of Dimethyl Acetylenedicarboxylate with Methylindoles;350
1.11.1.4.1.1.3.2;17.4.6.10.1.1.3.2 Method 2: From the Reaction of Phosphonium Ylides;351
1.11.1.4.1.1.4;17.4.6.10.1.1.4 By Formation of One C--N Bond;353
1.11.1.4.1.1.4.1;17.4.6.10.1.1.4.1 Method 1: By Intramolecular Addition of Anilines;353
1.11.1.4.1.2;17.4.6.10.1.2 Synthesis by Ring Transformation;355
1.11.1.4.1.2.1;17.4.6.10.1.2.1 By Ring Enlargement;355
1.11.1.4.1.2.1.1;17.4.6.10.1.2.1.1 Method 1: By Ring Expansion of Activated Quinolines;355
1.11.1.4.2;17.4.6.10.2 2-Benzazepines;356
1.11.1.4.2.1;17.4.6.10.2.1 Synthesis by Ring-Closure Reactions;356
1.11.1.4.2.1.1;17.4.6.10.2.1.1 By Formation of One N--C and One C--C Bond;356
1.11.1.4.2.1.1.1;17.4.6.10.2.1.1.1 Method 1: By a Tandem Ritter/Houben–Hoesch Process;356
1.11.1.4.2.1.1.2;17.4.6.10.2.1.1.2 Method 2: By Reaction of 4-Chloro-2-oxo-2H-1-benzopyran-3-carbaldehyde with Benzylamines;357
1.11.1.4.2.1.2;17.4.6.10.2.1.2 By Formation of One C--C Bond;359
1.11.1.4.2.1.2.1;17.4.6.10.2.1.2.1 Method 1: By Cyclization of 2-Azahepta-2,4-dien-6-ynyls;359
1.11.1.4.3;17.4.6.10.3 5H-Dibenz[b,d]azepines;360
1.11.1.4.3.1;17.4.6.10.3.1 Synthesis by Substituent Modification;360
1.11.1.4.3.1.1;17.4.6.10.3.1.1 Method 1: By Rhodium-Catalyzed Decarbonylative Cycloaddition;360
1.11.1.4.4;17.4.6.10.4 11H-Dibenz[b,e]azepines;361
1.11.1.4.4.1;17.4.6.10.4.1 Synthesis by Ring-Closure Reactions;361
1.11.1.4.4.1.1;17.4.6.10.4.1.1 By Formation of One N--C and One C--C Bond;361
1.11.1.4.4.1.1.1;17.4.6.10.4.1.1.1 Method 1: By Condensation of 2,6-Dimethylaniline with Phenanthrene-9,10-dione;361
1.11.1.4.4.1.2;17.4.6.10.4.1.2 By Formation of One C--C Bond;361
1.11.1.4.4.1.2.1;17.4.6.10.4.1.2.1 Method 1: By Bischler–Napieralski Cyclodehydration of N-(2-Benzylphenyl)-2-chloroacetamide;361
1.11.1.4.4.1.2.2;17.4.6.10.4.1.2.2 Method 2: By Friedel–Crafts Cyclization of 2-Allyl-N-benzylanilines;362
1.11.1.4.4.1.2.3;17.4.6.10.4.1.2.3 Method 3: By Acid-Mediated Cyclization of Benzylic Alcohols;363
1.11.1.4.5;17.4.6.10.5 5H-Dibenz[c,e]azepines;365
1.11.1.4.5.1;17.4.6.10.5.1 Synthesis by Ring-Closure Reactions;365
1.11.1.4.5.1.1;17.4.6.10.5.1.1 By Formation of Two N--C Bonds;365
1.11.1.4.5.1.1.1;17.4.6.10.5.1.1.1 Method 1: Ring Closure of 2,2'-Difunctionalized Biaryls with Chiral Amines under Acidic Conditions;365
1.11.1.4.6;17.4.6.10.6 5H-Dibenz[b,f]azepines;370
1.11.1.4.6.1;17.4.6.10.6.1 Synthesis by Ring-Closure Reactions;370
1.11.1.4.6.1.1;17.4.6.10.6.1.1 By Formation of One C--C and One C--N Bond;370
1.11.1.4.6.1.1.1;17.4.6.10.6.1.1.1 Method 1: By a Palladium-Catalyzed Tandem Process;370
1.11.1.4.6.1.2;17.4.6.10.6.1.2 By Formation of One C--C Bond;371
1.11.1.4.6.1.2.1;17.4.6.10.6.1.2.1 Method 1: By Palladium-Catalyzed Intramolecular Amination;371
1.11.1.4.6.1.2.2;17.4.6.10.6.1.2.2 Method 2: Friedel–Crafts Acylation;372
1.11.1.4.6.2;17.4.6.10.6.2 Synthesis by Ring Transformation;373
1.11.1.4.6.2.1;17.4.6.10.6.2.1 By Ring Enlargement;373
1.11.1.4.6.2.1.1;17.4.6.10.6.2.1.1 Method 1: From 1-Arylindoles;373
1.11.1.4.6.2.1.1.1;17.4.6.10.6.2.1.1.1 Variation 1: Ring Expansion of 6-Methoxy-1-phenylindole;373
1.11.1.4.6.3;17.4.6.10.6.3 Aromatization;373
1.11.1.4.6.3.1;17.4.6.10.6.3.1 Method 1: Bromination–Dehydrobromination;373
1.11.1.4.6.3.1.1;17.4.6.10.6.3.1.1 Variation 1: Dehalogenation of 5-Acetyl-10,11-dibromo-10,11-dihydro-5H-dibenz[b,f]azepine with 1,2-Diphenylethane-1,2-diyldisodium;373
1.11.1.4.6.4;17.4.6.10.6.4 Synthesis by Substituent Modification;374
1.11.1.4.6.4.1;17.4.6.10.6.4.1 Substitution of Hydrogen;374
1.11.1.4.6.4.1.1;17.4.6.10.6.4.1.1 Method 1: N-Alkylation of 5H-Dibenz[b,f]azepines;374
1.11.1.4.6.4.1.1.1;17.4.6.10.6.4.1.1.1 Variation 1: By Phase-Transfer Catalysis;375
1.11.1.4.6.4.1.2;17.4.6.10.6.4.1.2 Method 2: N-Acylation of 5H-Dibenz[b,f]azepines;376
1.11.1.4.6.4.1.2.1;17.4.6.10.6.4.1.2.1 Variation 1: By Reaction with Acid Chlorides;376
1.11.1.4.6.4.1.2.2;17.4.6.10.6.4.1.2.2 Variation 2: By Reaction with Dimethyl Carbonate;377
1.11.1.4.6.4.1.2.3;17.4.6.10.6.4.1.2.3 Variation 3: By Palladium-Mediated Carbonylative Benzoylation of 5H-Dibenz[b,f]azepine;377
1.11.1.4.6.4.1.2.4;17.4.6.10.6.4.1.2.4 Variation 4: By Reaction with Trifluoroacetic Anhydride;378
1.11.1.4.6.4.1.2.5;17.4.6.10.6.4.1.2.5 Variation 5: N-Formylation of 5H-Dibenz[b,f]azepine;378
1.11.1.4.6.4.1.3;17.4.6.10.6.4.1.3 Method 3: Chlorocarbonylation of 5H-Dibenz[b,f]azepines with Phosgene Equivalents;379
1.11.1.4.6.4.1.3.1;17.4.6.10.6.4.1.3.1 Variation 1: N-Acylation of 5H-Dibenz[b,f]azepines Followed by Amination;379
1.11.1.4.6.4.1.4;17.4.6.10.6.4.1.4 Method 4: Formation of N--P Bonds;379
1.11.1.4.6.4.1.5;17.4.6.10.6.4.1.5 Method 5: By a Methoxy Group;381
1.11.1.4.6.4.1.6;17.4.6.10.6.4.1.6 Method 6: Palladium-Catalyzed N-Arylation;382
1.11.1.4.6.4.2;17.4.6.10.6.4.2 Substitution of Heteroatoms;383
1.11.1.4.6.4.2.1;17.4.6.10.6.4.2.1 Method 1: Substitution of Bromine;383
1.11.1.4.6.4.3;17.4.6.10.6.4.3 Addition Reactions;384
1.11.1.4.6.4.3.1;17.4.6.10.6.4.3.1 Method 1: Formation of Epoxides by Oxidation;384
1.11.1.4.6.4.3.2;17.4.6.10.6.4.3.2 Method 2: Formation of Diols by Oxidation;384
1.11.1.4.6.4.3.3;17.4.6.10.6.4.3.3 Method 3: [2 + 2] Photodimerization of 5-Acetyl-5H-dibenz[b,f]azepine;385
1.11.1.4.6.4.3.3.1;17.4.6.10.6.4.3.3.1 Variation 1: [2 + 2] Photodimerization of 5H-Dibenz[b,f]azepine Derivatives;385
1.11.1.4.7;17.4.6.10.7 9H-Tribenz[b,d,f]azepines;386
1.11.1.4.7.1;17.4.6.10.7.1 Synthesis by Ring-Closure Reactions;386
1.11.1.4.7.1.1;17.4.6.10.7.1.1 By Formation of One N--C Bond;386
1.11.1.4.7.1.1.1;17.4.6.10.7.1.1.1 Method 1: From N-(2-Bromophenyl)biphenyl-2-amine;386
1.11.1.4.8;17.4.6.10.8 Other Group 15 Benzoheterepins;387
1.11.1.4.8.1;17.4.6.10.8.1 3-Benzoheterepins;387
1.11.1.4.8.1.1;17.4.6.10.8.1.1 Synthesis by Ring-Closure Reactions;387
1.11.1.4.8.1.1.1;17.4.6.10.8.1.1.1 By Formation of Two Heteroatom--Carbon Bonds;387
1.11.1.4.8.1.1.1.1;17.4.6.10.8.1.1.1.1 Method 1: Potassium Hydroxide Catalyzed Addition of Metal Complexed Phosphines to 1,2-Diethynylbenzene;387
1.11.1.4.8.1.1.1.2;17.4.6.10.8.1.1.1.2 Method 2: From 1,2-Bis[(Z)-2-bromovinyl]benzenes and Metal Halides;388
1.12;Volume 19: Three Carbon--Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives;392
1.12.1;19.5 Product Class 5: Nitriles;392
1.12.1.1;19.5.17 Synthesis of Nitriles Using Cross-Coupling Reactions;392
1.12.1.1.1;19.5.17.1 Preparation of Aryl Cyanides;392
1.12.1.1.1.1;19.5.17.1.1 Method 1: Use of Alkali Metal Cyanides;392
1.12.1.1.1.1.1;19.5.17.1.1.1 Variation 1: Palladium-Catalyzed Approaches;393
1.12.1.1.1.1.2;19.5.17.1.1.2 Variation 2: Copper-Catalyzed Approaches;395
1.12.1.1.1.1.3;19.5.17.1.1.3 Variation 3: Dual Palladium- and Copper-Catalyzed Approaches;396
1.12.1.1.1.1.4;19.5.17.1.1.4 Variation 4: Nickel-Catalyzed Approaches;397
1.12.1.1.1.2;19.5.17.1.2 Method 2: Use of Zinc(II) Cyanide;398
1.12.1.1.1.2.1;19.5.17.1.2.1 Variation 1: Palladium-Catalyzed Approaches: Homogeneous Catalysis;398
1.12.1.1.1.2.2;19.5.17.1.2.2 Variation 2: Palladium-Catalyzed Approaches: Heterogeneous Catalysis;406
1.12.1.1.1.2.3;19.5.17.1.2.3 Variation 3: Copper-Mediated Approaches;408
1.12.1.1.1.3;19.5.17.1.3 Method 3: Use of Nickel(II) Cyanide as the Cyanide Source;409
1.12.1.1.1.4;19.5.17.1.4 Method 4: Use of Copper(I) Cyanide as the Cyanide Source;410
1.12.1.1.1.5;19.5.17.1.5 Method 5: Use of Potassium Hexacyanoferrate(II) as the Cyanide Source;411
1.12.1.1.1.5.1;19.5.17.1.5.1 Variation 1: Palladium-Catalyzed Approaches: Homogeneous Catalysis;411
1.12.1.1.1.5.2;19.5.17.1.5.2 Variation 2: Palladium-Catalyzed Approaches: Heterogeneous Catalysis;418
1.12.1.1.1.5.3;19.5.17.1.5.3 Variation 3: Copper-Catalyzed Approaches;421
1.12.1.1.1.5.4;19.5.17.1.5.4 Variation 4: Dual Palladium- and Copper-Catalyzed Approaches;424
1.12.1.1.1.6;19.5.17.1.6 Method 6: Use of Organic Cyanide Sources;425
1.12.1.1.1.6.1;19.5.17.1.6.1 Variation 1: Use of Cyanohydrins;425
1.12.1.1.1.6.2;19.5.17.1.6.2 Variation 2: Use of Trimethylsilyl Cyanide;429
1.12.1.1.1.6.3;19.5.17.1.6.3 Variation 3: Use of N-Cyano-N-phenyl-4-toluenesulfonamide;431
1.12.1.1.1.7;19.5.17.1.7 Method 7: In Situ Generation of Cyanide from Non-Cyanide-Containing Precursors;431
1.12.1.1.2;19.5.17.2 Preparation of Hetaryl Cyanides;433
1.12.1.1.2.1;19.5.17.2.1 Method 1: Palladium-Catalyzed Coupling Reactions;437
1.12.1.1.2.2;19.5.17.2.2 Method 2: Copper-Catalyzed Coupling Reactions;440
1.12.1.1.2.3;19.5.17.2.3 Method 3: Dual Palladium- and Copper-Catalyzed Approaches;443
1.12.1.1.3;19.5.17.3 Preparation of Vinyl Cyanides;446
1.12.1.1.3.1;19.5.17.3.1 Method 1: Cyanation of Vinyl Halides and Vinylboronic Acids;446
1.13;Volume 27: Heteroatom Analogues of Aldehydes and Ketones;454
1.13.1;27.25 Product Class 25: N-Sulfanyl-, N-Selanyl-, and N-Tellanylimines, and Their Oxidation Derivatives;454
1.13.1.1;27.25.1 Product Subclass 1: N-Sulfanylimines;454
1.13.1.1.1;27.25.1.1 Synthesis of Product Subclass 1;454
1.13.1.1.1.1;27.25.1.1.1 Method 1: Synthesis from Aldehydes or Ketones;454
1.13.1.1.1.1.1;27.25.1.1.1.1 Variation 1: From Ammonia and a Thiol;454
1.13.1.1.1.1.2;27.25.1.1.1.2 Variation 2: From Ammonia and a Disulfide;455
1.13.1.1.1.1.3;27.25.1.1.1.3 Variation 3: From N,N-Bis(trimethylsilyl)sulfenamides;456
1.13.1.1.1.1.4;27.25.1.1.1.4 Variation 4: From Sulfenamides;458
1.13.1.1.1.2;27.25.1.1.2 Method 2: Synthesis from Imines and Imine Derivatives;461
1.13.1.1.1.2.1;27.25.1.1.2.1 Variation 1: From N-Unsubstituted Imines;461
1.13.1.1.1.2.2;27.25.1.1.2.2 Variation 2: From Oximes;462
1.13.1.1.1.2.3;27.25.1.1.2.3 Variation 3: From Oxime Thiocarbamates;463
1.13.1.1.1.2.4;27.25.1.1.2.4 Variation 4: From O-Tosyloximes;464
1.13.1.1.1.2.5;27.25.1.1.2.5 Variation 5: From N-Chloroimines;465
1.13.1.1.1.3;27.25.1.1.3 Method 3: Synthesis from a-Aminoalkanoates;467
1.13.1.1.1.4;27.25.1.1.4 Method 4: Synthesis from Sulfinamides;468
1.13.1.1.1.5;27.25.1.1.5 Method 5: Synthesis from Nitro Compounds;468
1.13.1.2;27.25.2 Product Subclass 2: N-Sulfinylimines;469
1.13.1.2.1;27.25.2.1 Synthesis of Product Subclass 2;469
1.13.1.2.1.1;27.25.2.1.1 Method 1: Synthesis by Oxidation of N-Sulfanylimines;469
1.13.1.2.1.2;27.25.2.1.2 Method 2: Synthesis from N-Metalated Imines;473
1.13.1.2.1.2.1;27.25.2.1.2.1 Variation 1: From Sulfinate Esters;473
1.13.1.2.1.2.2;27.25.2.1.2.2 Variation 2: From a Cyclic Sulfinamide;475
1.13.1.2.1.3;27.25.2.1.3 Method 3: Synthesis from Ortho Esters;476
1.13.1.2.1.4;27.25.2.1.4 Method 4: Synthesis from an Aldehyde Hydrate;477
1.13.1.2.1.5;27.25.2.1.5 Method 5: Synthesis from Carbonyl Derivatives;477
1.13.1.2.1.5.1;27.25.2.1.5.1 Variation 1: From 1,2,3-Oxathiazolidine 2-Oxides;477
1.13.1.2.1.5.2;27.25.2.1.5.2 Variation 2: From Sulfinate Esters;479
1.13.1.2.1.5.3;27.25.2.1.5.3 Variation 3: From an N-Sulfinylbornane-10,2-sultam;481
1.13.1.2.1.5.4;27.25.2.1.5.4 Variation 4: From Sulfinamides;482
1.13.1.2.1.5.5;27.25.2.1.5.5 Variation 5: From a Phosphazene;485
1.13.1.2.1.6;27.25.2.1.6 Method 6: Synthesis from Sulfoximides;486
1.13.1.2.1.7;27.25.2.1.7 Method 7: Synthesis from Other N-Sulfinylimines;487
1.13.1.2.2;27.25.2.2 Applications of Product Subclass 2 in Organic Synthesis;488
1.13.1.3;27.25.3 Product Subclass 3: N-Sulfonylimines;490
1.13.1.3.1;27.25.3.1 Synthesis of Products of Subclass 3;490
1.13.1.3.1.1;27.25.3.1.1 Method 1: Synthesis from Acetals;490
1.13.1.3.1.1.1;27.25.3.1.1.1 Variation 1: From O,O-Acetals and Sulfonamides;490
1.13.1.3.1.1.2;27.25.3.1.1.2 Variation 2: From N-[(Arylsulfonyl)methyl]arenesulfonamides;491
1.13.1.3.1.2;27.25.3.1.2 Method 2: Synthesis from Alkenes and Allenes;492
1.13.1.3.1.2.1;27.25.3.1.2.1 Variation 1: By Oxidative Amination;492
1.13.1.3.1.2.2;27.25.3.1.2.2 Variation 2: From N,N-Dihalosulfonamides;493
1.13.1.3.1.2.3;27.25.3.1.2.3 Variation 3: From Sulfonyl Azides;493
1.13.1.3.1.2.4;27.25.3.1.2.4 Variation 4: From Oxazolidinones;495
1.13.1.3.1.3;27.25.3.1.3 Method 3: Synthesis from Alkynes;496
1.13.1.3.1.3.1;27.25.3.1.3.1 Variation 1: By a Hydroamination Reaction;496
1.13.1.3.1.3.2;27.25.3.1.3.2 Variation 2: From Sulfonyl Azides;498
1.13.1.3.1.3.3;27.25.3.1.3.3 Variation 3: Through Iminobismuthane Addition;499
1.13.1.3.1.4;27.25.3.1.4 Method 4: Synthesis from Aziridines;500
1.13.1.3.1.5;27.25.3.1.5 Method 5: Synthesis from Carbonyl Compounds;501
1.13.1.3.1.5.1;27.25.3.1.5.1 Variation 1: From Sulfonamides;501
1.13.1.3.1.5.2;27.25.3.1.5.2 Variation 2: From Isocyanates;506
1.13.1.3.1.5.3;27.25.3.1.5.3 Variation 3: From N-Sulfinylsulfonamides;507
1.13.1.3.1.5.4;27.25.3.1.5.4 Variation 4: From Chloramine-T;508
1.13.1.3.1.6;27.25.3.1.6 Method 6: Synthesis from Other Imines;510
1.13.1.3.1.6.1;27.25.3.1.6.1 Variation 1: From Oximes;510
1.13.1.3.1.6.2;27.25.3.1.6.2 Variation 2: From N-(Trimethylsilyl)imines;512
1.13.1.3.1.6.3;27.25.3.1.6.3 Variation 3: From N-Sulfanylimines;512
1.13.1.3.1.6.4;27.25.3.1.6.4 Variation 4: From N-Sulfinylimines;513
1.13.1.3.1.6.5;27.25.3.1.6.5 Variation 5: From Imidoyl Chlorides;514
1.13.1.3.1.7;27.25.3.1.7 Method 7: Synthesis from Sulfimides;515
1.13.1.3.1.8;27.25.3.1.8 Method 8: Synthesis by Oxidation of N-Sulfonylanilines;517
1.13.1.3.1.9;27.25.3.1.9 Method 9: Synthesis from N-Sulfonylamides;524
1.13.1.3.2;27.25.3.2 Applications of Product Subclass 3 in Organic Synthesis;524
1.13.1.4;27.25.4 Product Subclass 4: N-Selanylimines;525
1.13.1.4.1;27.25.4.1 Synthesis of Product Subclass 4;525
1.13.1.4.1.1;27.25.4.1.1 Method 1: Synthesis from N-Unsubstituted Imines;525
1.13.1.4.1.2;27.25.4.1.2 Method 2: Synthesis by Oxidation of Phenols;525
1.13.1.4.1.3;27.25.4.1.3 Method 3: Synthesis from N-Selenamides;527
1.13.1.5;27.25.5 Product Subclass 5: N-Seleninylimines and Related Compounds;527
1.13.1.5.1;27.25.5.1 Synthesis of Product Subclass 5;527
1.13.1.5.1.1;27.25.5.1.1 Method 1: Synthesis from Imines and Imine Derivatives;527
1.13.1.5.1.1.1;27.25.5.1.1.1 Variation 1: From Imines;528
1.13.1.5.1.1.2;27.25.5.1.1.2 Variation 2: From N-Chloroimines;528
1.13.1.6;27.25.6 Product Subclass 6: N-Tellanylimines;528
1.13.1.6.1;27.25.6.1 Synthesis of Product Subclass 6;528
1.13.1.6.1.1;27.25.6.1.1 Method 1: From N-Metalloimines;528
1.13.1.6.1.2;27.25.6.1.2 Method 2: From Pentafluorotellurium Isocyanate;529
1.14;Author Index;538
1.15;Abbreviations;560
1.16;List of All Volumes;566


Abstracts
2.10.19 Organometallic Complexes of Titanium (Update 1)
P. Bertus, F. Boeda, and M. S. M. Pearson-Long This chapter is an update to the earlier Science of Synthesis contribution describing the synthesis and application of titanium complexes in organic synthesis. This update focuses on the synthesis of cyclopropane derivatives using titanium reagents, with particular emphasis on the preparation of cyclopropanols from carboxylic esters (Kulinkovich reaction) and cyclopropylamines from carboxylic amides or nitriles. Keywords: amides · bicyclic compounds · carbonates · cyclopropanes · cyclopropanols · cyclopropylamines · esters · Grignard reagents · imides · magnesium · nitriles · titanium 4.4.1 Product Subclass 1: Disilenes
A. Meltzer and D. Scheschkewitz The syntheses of stable and marginally stable compounds with Si=Si bonds, i.e. linear and cyclic disilenes as well as tetrasilabutadienes, are reviewed. Typical procedures are described including detailed special requirements and precautions. Keywords: alkene analogues · coupling reactions · cyclic compounds · dehalogenation · disilenes · disilenides · disilynes · photolysis · reductive coupling · silanes · silicon compounds · silylenes · silyl halides · unsaturated compounds 8.1.31 Functionalized Organolithiums by Ring Opening of Heterocycles
M. Yus and F. Foubelo This manuscript describes the preparation of functionalized organolithium compounds by reductive opening of heterocycles and further reaction of these intermediates with electrophiles. Keywords: activation of C—O bonds · alkali metal compounds · carbanions · carbon—metal bonds · heterocycles · lithiation · lithium compounds · radical ions · reductive cleavage 8.1.32 Syntheses Mediated by a-Lithiated Epoxides and Aziridines
L. Degennaro, F. M. Perna, and S. Florio Three-membered ring heterocycles such as epoxides and aziridines, whose structural motif occurs frequently in natural products and biologically active substances, are an uncommon combination of reactivity, synthetic flexibility, and atom economy. Readily accessible, also in enantioenriched form, they are mainly used as electrophiles, undergoing highly regioselective ring-opening reactions when reacted with nucleophiles. There are, however, many other less conventional but useful reactions these small-ring heterocycles may undergo. This chapter surveys a selection of the most recent advances in the chemistry of a-lithiated epoxides and aziridines, which can be simply generated by treatment of the parent epoxide or aziridine with strong bases such as organolithiums or lithium amides. Such lithiated species are relatively stable and can be captured with a number of electrophiles to give more functionalized oxiranes and aziridines or undergo other transformations including 1,2-organo shifts to enolates, eliminative dimerization, ß-elimination, intramolecular cyclopropanation onto a double bond (C=C insertion), transannular C—H insertion, and reductive alkylation. Keywords: oxiranes · aziridines · small-ring heterocycles · a-lithiation · carbenoids · organolithiums · configurational stability · asymmetric synthesis 8.1.33 Transition-Metal-Catalyzed Carbon—Carbon Bond Formation with Organolithiums
G. Manolikakes Transition-metal-catalyzed reactions with organolithiums are a useful tool for the formation of carbon—carbon bonds. This chapter covers reactions with organolithium compounds catalyzed by various transition metals such as copper, palladium, or iron. Keywords: lithium compounds · cross coupling · copper catalysis · palladium catalysis · iron catalysis · carbolithiation · asymmetric catalysis 16.2.4 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives
S. M. Sakya and J. Yang This manuscript concerns three types of compound: 1,4-dioxins, 1,4-benzodioxins, and dibenzo[b,e][1,4]dioxins, and covers recent syntheses of these substrates that have not previously been highlighted in Section 16.2 of Science of Synthesis. Keywords: aromatization · base-induced coupling · 1,4-benzodioxins · Diels–Alder reaction · 1,4-dioxins · dibenzo[b,e][1,4]dioxins · lithium–halogen exchange · ring-closing metathesis · ring-closure reactions · Stille coupling · substituent modification · Vilsmeier reaction 16.3.5 1,2-Dithiins
F. K. Yoshimoto and Q. Li 1,2-Dithiins are six-membered rings with two double bonds and two sulfur atoms within the ring. Related compounds include 3,6-dihydro-1,2-dithiins, 1,4-dihydrobenzo[d][1,2]dithiins, and dibenzo[c,e][1,2]dithiins. A wide variety of compounds observed in nature are found to contain the dithiin motif and the group is implicated in a wide range of biological activity. 1,2-Dithiins have also been used in other fields, for example as organic transistors and ligands for transition metals. This section updates previously published material in Science of Synthesis and in particular focuses on synthesis by ring-closure reactions and applications of the group in reactions with transition metals, Lewis acids, diazo compounds, alkynes, and enzymes. Keywords: cyclization · diazo compounds · dibenzo[c,e][1,2]dithiins · Diels–Alder reaction · 1,4-dihydrobenzo[d][1,2]dithiins · 3,6-dihydro-1,2-dithiins · dimerization · 1,2-dithianes · 1,2-dithiins · enzymes · Lewis acids · phase-transfer catalysis · photolysis · ring-closing metathesis · ring-closure reactions · sulfonation · transition metals 17.4.1.5 Oxepins
J. Hong This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of oxepins. It focuses on the literature published in the period 2003–2011. Keywords: cycloaddition · dehydrogenation · isomerization · Michael addition · nucleophilic substitution · ring expansion 17.4.2.5 Benzoxepins
J. Hong This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of benzoxepins. It focuses on the literature published in the period 2003–2011. Keywords: annulation · condensation reactions · cyclization · cyclocondensation · rearrangement · ring closure · ring expansion · transition metals 17.4.5.5 Azepines, Cyclopentazepines, and Phosphorus Analogues
J. E. Camp This manuscript is an update of the earlier Science of Synthesis contribution describing methods for the synthesis of fully unsaturated azepines, cyclopentazepines, and their phosphorus analogues. It focuses on the literature published between 2003 and 2010. Keywords: azepines · cyclopentazepines · electrocyclization · Diels–Alder · photolytic decomposition · rearrangement · C-amination · C-alkoxylation · Friedel–Crafts · azepinium ion 17.4.6.10 Benzazepines and Their Group 15 Analogues
J. E. Camp This manuscript is an update of the earlier Science of Synthesis contribution describing methods for the synthesis of fully unsaturated benzazepines and their group 15 analogues. It focuses on the literature published between 2003 and 2010. Keywords: benzazepines · dibenzoheterepins · tribenzoheterepins · condensation · Bischler–Napieralski · tandem reaction · phase-transfer catalysis · ring enlargement · photodimerization · benzoheterepins · Friedel–Crafts 19.5.17 Synthesis of Nitriles Using Cross-Coupling Reactions
D. M. Rudzinski and N. E. Leadbeater The synthesis of aryl and hetaryl nitriles by metal-catalyzed cross-coupling reactions is presented. Attention is focused mainly on key methodologies published in the period 2003–2011. As well as the use of alkali metal cyanide salts as sources of cyanide, the application of the less toxic and increasingly popular potassium hexacyanoferrate(II) is also discussed. Keywords: nitriles · cyanide · cyanation · cross coupling · palladium · nickel · copper · aryl halides · hetaryl halides · aryl trifluoromethanesulfonates · aryl methanesulfonates 27.25 Product Class 25: N-Sulfanyl-, N-Selanyl-, and N-Tellanylimines, and Their Oxidation...


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.