Li / Han | Machine Learning in Protein Science | Buch | 978-3-527-35215-9 | www.sack.de

Buch, Englisch, 240 Seiten, Format (B × H): 170 mm x 244 mm

Li / Han

Machine Learning in Protein Science

Efficient Prediction of Protein Structures and Properties
1. Auflage 2025
ISBN: 978-3-527-35215-9
Verlag: Wiley-VCH GmbH

Efficient Prediction of Protein Structures and Properties

Buch, Englisch, 240 Seiten, Format (B × H): 170 mm x 244 mm

ISBN: 978-3-527-35215-9
Verlag: Wiley-VCH GmbH


Harness the power of machine learning for quick and efficient calculations of protein structures and properties

Machine Learning in Protein Science is a unique and practical reference that shows how to employ machine learning approaches for full quantum mechanical (FQM) calculations of protein structures and properties, thereby saving costly computing time and making this technology available for routine users.

Machine Learning in Protein Science provides comprehensive coverage of topics including: - Machine learning models and algorithms, from deep neural network (DNN) and transfer learning (TL) to hybrid unsupervised and supervised learning
- Protein structure predictions with AlphaFold to predict the effects of point mutations
- Modeling and optimization of the catalytic activity of enzymes
- Property calculations (energy, force field, stability, protein-protein interaction, thermostability, molecular dynamics)
- Protein design and large language models (LLMs) of protein systems

Machine Learning in Protein Science is an essential reference on the subject for biochemists, molecular biologists, theoretical chemists, biotechnologists, and medicinal chemists, as well as students in related programs of study.

Li / Han Machine Learning in Protein Science jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Introduction
Fundamentals of Theoretical Calculations on Protein Systems
Protein Structure Prediction by Artificial Intelligence
Methods and Tools for Predicting Protein Folding from Free Energy Change upon Mutation
Deep Neural Network-assisted Full-System Quantum Mechanical (FQM) Calculations of Proteins
Transfer Learning-assisted Full-System Quantum Mechanical (FQM) Calculations of Proteins
Protein Interaction Prediction with Artificial Intelligence
Protein Function Annotation with Machine Learning
Machine Learning-driven ab initio Protein Design
Large Language Models of Protein Systems
Outlook


Jinjin Li is a professor at the School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University in Shanghai, China. Having obtained her Ph.D. degrees from Shanghai University, she performed postdoctoral work at the University of Illinois, USA and was a Senior Research Fellow at the University of California, USA. Professor Li has authored over 200 publications and four monographs. She is also a long-standing editorial board member and reviewer for several international academic journals.
 
Yanqiang Han is an assistant professor at the School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University in Shanghai, China. He obtained his Ph.D. degrees from Shanghai University. He has authored over 30 publications in the field of computational biology and machine learning and is a reviewer for several international academic journals.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.