Lossio-Ventura / Ceh-Varela / Alatrista-Salas | Information Management and Big Data | Buch | 978-3-031-91427-0 | www.sack.de

Buch, Englisch, 418 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 657 g

Reihe: Communications in Computer and Information Science

Lossio-Ventura / Ceh-Varela / Alatrista-Salas

Information Management and Big Data

11th Annual International Conference, SIMBig 2024, Ilo, Peru, November 20-22, 2024, Proceedings
Erscheinungsjahr 2025
ISBN: 978-3-031-91427-0
Verlag: Springer Nature Switzerland

11th Annual International Conference, SIMBig 2024, Ilo, Peru, November 20-22, 2024, Proceedings

Buch, Englisch, 418 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 657 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-91427-0
Verlag: Springer Nature Switzerland


This book constitutes the proceedings of the 11th Annual International Conference on Information Management and Big Data, SIMBig 2024, held in Ilo, Peru, during November 20–22, 2024.

The 27 full papers and 1 short paper included in this book were carefully reviewed and selected from 102 submissions. They were organized in topical sections as follows: machine learning and deep learning; natural language processing; mining of social networks and online platforms; and signal and image processing.

Lossio-Ventura / Ceh-Varela / Alatrista-Salas Information Management and Big Data jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Machine Learning and Deep Learning.- Preserving Hidden Hierarchical Structure: Poincaré Distance for Enhanced Genomic Sequence Analysis.- EPIC: Enhancing Privacy through Iterative Collaboration.- DWFL: Enhancing Federated Learning through Dynamic Weighted Averaging.- An Scoping Review: Explainable Deep Learning Approach for Automated Sismo-Volcanic Event Classification.- Machine Learning Algorithms for Predicting Student Dropout in Engineering Programs.- A Deep Learning Model for Ingredient and Meal Quantity Estimation in Type 2 Diabetes Care.- Parallel Multi-objective Evolutionary Algorithms: A Systematic Literature Review.- Application of Multilayer Perceptron: Analysis of Socioeconomic Factors of Poverty in Peru.- Predicting Shear Strength at the Joint of a Beam and a Column Using Supervised Learning and Multivariate Neural Networks.- Prediction of Maximum Rainfall for Early warning of Heavy Rainfall with Multivariable Long-term Memory Networks and Temporal Transformers.- Electricity Demand Time Series Benchmark.- Natural Language Processing.- Leveraging LLMs for Enhanced Personality Trait Classification.- Comparison of Neural Network Models for the Implementation of a Chatbot in the University Admission Process.- Enhancing Academic Profiling with Advanced NLP Techniques: SBERT + KeyBERT.- Making an Under-Resourced Language Available on the Wikidata Knowledge Graph: Quechua Language.- Enhancing BERT Classification by Increasing Training Corpus Using Paraphrasing.- Transformer GPT-2 Model for Code Prediction in Machine Learning Projects.- Small Electra for Hate: A Transformer Lightweight Approach to Hate Text Classification.- Mining of Social Networks and Online Platforms.- Predictive Model Applying Sentiment Analysis on Tweets to Determine the Behavior of the Cryptocurrency Bitcoin.- ThreatGram 101 - Extreme Telegram Replies Data with Threat Levels.- A Comparison of Classication Algorithms for Disaster Tweets.- Explainable Sentiment Analysis on Restaurant Reviews using an Evolutionary Algorithm.- Signal and Image Processing.- Spanish Historical Handwritten Text Recognition with Deep Learning.- Methodological Approach for the Development of a Mountain Glacier Dataset Using Satellite Imagery for Deep Learning Applications.- An Efficient Automatic Classification Hybrid Model to Identify Images of Commercial Starchy Corn.- Hybrid Quantum Model for Brain Tumor Classification.- Safycash: Mobile Application for Authentic Banknote Detection Using Image Processing Libraries and Convolutional Neural Networks.- Development of 1D-CNN Methods for Classifying Pediatric Epilepsy through EEG Signals.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.