E-Book, Englisch, 406 Seiten
Lucas / Le Mercier / Rollat Rare Earths
1. Auflage 2014
ISBN: 978-0-444-62744-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Science, Technology, Production and Use
E-Book, Englisch, 406 Seiten
ISBN: 978-0-444-62744-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
High-technology and environmental applications of the rare-earth elements (REE) have grown dramatically in diversity and importance over the past four decades. This book provides a scientific understanding of rare earth properties and uses, present and future. It also points the way to efficient recycle of the rare earths in end-of-use products and efficient use of rare earths in new products. Scientists and students will appreciate the book's approach to the availability, structure and properties of rare earths and how they have led to myriad critical uses, present and future. Experts should buy this book to get an integrated picture of production and use (present and future) of rare earths and the science behind this picture. This book will prove valuable to.non-scientists as well in order to get an integrated picture of production and use of rare earths in the 21st Century, and the science behind this picture. - Defines the chemical, physical and structural properties of rare earths. - Gives the reader a basic understanding of what rare earths can do for us. - Describes uses of each rare earth with chemical, physics, and structural explanations for the properties that underlie those uses. - Allows the reader to understand how rare earths behave and why they are used in present applications and will be used in future applications. - Explains to the reader where and how rare earths are found and produced and how they are best recycled to minimize environmental impact and energy and water consumption.
Jacques Lucas is a member of the French Academy of Sciences and Emeritus Professor at the University of Rennes, France. He has co-authored several books on glasses, ceramics, and optics. He has been involved in rare earths research (photonics) as well as teaching for more than 40 years. He published more than 450 articles and co-chaired several international conferences devoted to rare earths doped optical materials. He founded and headed the CNRS Glass and Ceramic laboratory at University of Rennes for 30 years. Three start-up companies were founded based on the laboratory discoveries. He has also been Associate professor at University of Arizona and invited Professor at Kyoto University, Japan as well as at Shanghai University, PR China. He is in close contact with Solvay, the world leading company in rare earth separation, as well as with the Chinese and Japanese rare earth scientific community.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Rare Earths: Science, Technology, Production and Use;4
3;Copyright;5
4;Contents;6
5;Contributors;18
6;Preface;20
7;Chapter 1: Overview;22
7.1;1.1. Exploited Properties;22
7.2;1.2. Uses;23
7.3;1.3. Occurrence;25
7.4;1.4. Mines and Mining;25
7.5;1.5. Rare Earth [RE] Extraction;25
7.6;1.6. Metal Production;27
7.7;1.7. Rare Earth Uses;28
7.7.1;1.7.1. Rare earth metals in magnet alloys;28
7.7.2;1.7.2. Rare earths in rechargeable battery electrodes;30
7.7.3;1.7.3. Rare earth automobile exhaust pollution abatement catalysts;31
7.7.4;1.7.4. Glass polishing powders;31
7.7.5;1.7.5. Luminescent and phosphorescent uses;32
7.8;1.8. Rare Earth Recycling (Fig.1.9);32
7.9;1.9. Summary;33
7.10;References;34
7.11;Suggested Reading;35
8;Chapter 2: Rare Earth Production, Use and Price;36
8.1;2.1. Chapter Objectives;37
8.2;2.2. Form of Use;37
8.3;2.3. Detailed Uses;38
8.4;2.4. Rare Earth Prices;41
8.4.1;2.4.1. Comparison with platinum group metals;48
8.5;2.5. Mining Rare Earths;48
8.5.1;2.5.1. Locations;48
8.6;2.6. Summary;50
8.7;References;50
9;Chapter 3: Mining and Rare Earth Concentrate Production;52
9.1;3.1. Rare Earth Deposits;52
9.2;3.2. Igneous Deposits;52
9.3;3.3. Mining;53
9.4;3.4. Extracting Rare Earth Elements from Mined Ore;53
9.5;3.5. Concentrate Production;54
9.6;3.6. Froth Flotation;56
9.7;3.7. Flotation Product;57
9.7.1;3.7.1. Flotation summary;58
9.8;3.8. Rare Earth Beach Sands;58
9.9;3.9. Rare Earth Cation Adsorption Clays;60
9.10;3.10. Deposit Structure;62
9.11;3.11. Ion Adsorption Clay Formation;63
9.12;3.12. Commercial Leaching of the Clays;64
9.13;3.13. Initial Rare Earth Oxide Production;64
9.14;3.14. Summary;65
9.15;References;66
9.16;Suggested Reading;67
10;Chapter 4: Extracting Rare Earth Elements from Concentrates;68
10.1;4.1. Industrial Rare Earth Minerals;68
10.2;4.2. Industrial Rare Earth Extraction;70
10.3;4.3. Extraction from Monazite and Xenotime Ores;72
10.3.1;4.3.1. Caustic soda leaching;72
10.3.2;4.3.2. Advantages of caustic soda leaching;74
10.3.3;4.3.3. Acid baking process;74
10.4;4.4. Bastnasite Leaching;75
10.4.1;4.4.1. Roast-hydrochloric acid leach process;75
10.4.2;4.4.2. Caustic soda leaching;76
10.4.3;4.4.3. Sulfuric acid baking;77
10.5;4.5. Rare Earth Cation Adsorption Clays;78
10.5.1;4.5.1. Leaching methods;78
10.6;4.6. Loparite;80
10.7;4.7. Apatite;81
10.7.1;4.7.1. Sulfuric acid leaching;81
10.7.2;4.7.2. Nitric acid leaching;82
10.8;4.8. New Processes for Other Rare Earth Minerals Including Silicates;82
10.8.1;4.8.1. Thor Lake, Northwest territories, Canada (Avalon process, Fig.4.8);83
10.8.2;4.8.2. Dubbo, New South Wales, Australia (Alkane Resources, Ltd.);83
10.9;4.9. The Key Question of Radioactive Impurities Removal;85
10.9.1;4.9.1. The radioactive families;85
10.9.2;4.9.2. Thorium and uranium removal;86
10.9.3;4.9.3. Radium removal;86
10.9.4;4.9.4. Lead removal;86
10.9.5;4.9.5. Actinium removal;87
10.9.6;4.9.6. Thorex radioactive element removal process;87
10.10;4.10. Summary;88
10.11;Suggested Reading;88
11;Chapter 5: Rare Earths Purification, Separation, Precipitation and Calcination;90
11.1;5.1. Selective Crystallization;91
11.2;5.2. Ion Exchange;92
11.3;5.3. Solvent Extraction (Rydberg et al., 2007);93
11.3.1;5.3.1. Solvent extraction process-how to get pure rare earths from a mixed rare earth solution;94
11.3.2;5.3.2. The industrial solvent extraction equipment-mixer-settlers;98
11.3.3;5.3.3. The chemistry of solvent extraction and the solvent choice;98
11.3.4;5.3.4. Chloride process vs. nitrate process;103
11.4;5.4. Pure Rare Earth Compound Production;105
11.4.1;5.4.1. Oxides production;106
11.4.2;5.4.2. Phosphates production;107
11.4.3;5.4.3. Fluorides;108
11.5;5.5. Summary;108
11.6;Appendix 5.1. Rare Earth Separation Simulation;109
11.7;Appendix 5.2. Rare Earth Separations Using Specific Oxidation Degrees;109
11.7.1;Appendix 5.2.1. Cerium purification using Ce(IV) oxidation degree;109
11.7.2;Appendix 5.2.2. Europium purification using Eu(II) oxidation degree;110
11.8;Appendix 5.3. Chemical Reagents Consumption;110
11.8.1;Appendix 5.3.1. Solvation;111
11.8.2;Appendix 5.3.2. Anion Exchange;111
11.8.3;Appendix 5.3.3. Cation Exchange;112
11.9;Reference;112
12;Chapter 6: Production of Rare Earth Metals and Alloys-Electrowinning;114
12.1;6.1. Reduction;114
12.1.1;6.1.1. Electrowinning;115
12.1.2;6.1.2. Industrial reduction;115
12.2;6.2. Industrial Rare Earth Electrowinning;116
12.3;6.3. Chloride Electrowinning;117
12.3.1;6.3.1. Reactions;117
12.3.2;6.3.2. Metal purity;118
12.3.3;6.3.3. Alloy electrowinning;118
12.3.4;6.3.4. Industrial status;118
12.4;6.4. Oxide Feed-Fluoride Molten Salt Electrowinning;118
12.4.1;6.4.1. Electrolytic cell;120
12.4.2;6.4.2. Electrolyte;120
12.4.3;6.4.3. Reactions;123
12.4.4;6.4.4. Neodymium-iron alloy production;124
12.4.5;6.4.5. Purity;126
12.5;6.5. Neodymium Electrodeposition Rate;126
12.5.1;6.5.1. Electrodeposition rate;126
12.5.2;6.5.2. Metals and alloys made industrially by electrowinning;127
12.6;6.6. Summary;128
12.7;References;129
12.8;Suggested Reading;129
13;Chapter 7: Metallothermic Rare Earth Metal Reduction;130
13.1;7.1. Samarium Reduction;130
13.2;7.2. Thermodynamic Explanation;132
13.2.1;7.2.1. Lanthanum and tantalum vapor pressures;136
13.3;7.3. Reduction of Rare Earth Fluorides with Calcium Metal;136
13.3.1;7.3.1. Operation;137
13.4;7.4. Thermodynamic Explanation;139
13.4.1;7.4.1. Interpretation;140
13.5;7.5. Refining Rare Earth Metals and Alloys;140
13.6;7.6. Vacuum Casting;140
13.6.1;7.6.1. Lanthanum;141
13.7;7.7. Vaporization/Vapor Deposition;141
13.8;7.8. Summary;142
13.9;References;142
13.10;Suggested Reading;143
14;Chapter 8: Rare Earth Electronic Structures and Trends in Properties;144
14.1;8.1. Electronic Configuration of Rare Earths;144
14.1.1;8.1.1. Rare earths in the periodic table;144
14.1.2;8.1.2. Electronic configurations of rare earth elements;144
14.1.3;8.1.3. Focus on 4f energy levels;147
14.1.3.1;8.1.3.1. The 4f orbitals;147
14.1.3.2;8.1.3.2. Energy levels of 4f orbitals;147
14.1.3.3;8.1.3.3. Spectroscopic terms;149
14.1.3.4;8.1.3.4. The 4f and 5d energy levels variation;150
14.1.3.5;8.1.3.5. Crystal field effects;151
14.2;8.2. Degrees of Oxidation of Rare Earths;152
14.2.1;8.2.1. The metallic state;152
14.2.2;8.2.2. The ionic state;152
14.3;8.3. Lanthanides in Solution (in Water);154
14.4;8.4. Common Rare Earth Oxides;155
14.4.1;8.4.1. Non-stoichiometric oxides;155
14.4.2;8.4.2. Yttrium aluminum garnet: YAG;158
14.4.3;8.4.3. Phosphate RE: LnPO4;159
14.5;8.5. Summary;160
15;Chapter 9: Rare Earth Catalysts;162
15.1;9.1. Chapter Objectives;162
15.2;9.2. Automotive Catalytic Conversion;163
15.2.1;9.2.1. Platinum group metals versus rare earth oxides;164
15.2.2;9.2.2. Principal role;164
15.3;9.3. The Automotive Catalytic Converter;164
15.3.1;9.3.1. Converter internal structure;165
15.3.2;9.3.2. Catalyst support platform;166
15.3.3;9.3.3. Channel wall requirements;166
15.4;9.4. Catalyst Deposition;167
15.4.1;9.4.1. Dispersion preparation;168
15.4.2;9.4.2. Dispersion application;168
15.4.3;9.4.3. Drying and heat treatment;168
15.4.4;9.4.4. Critical steps;168
15.4.5;9.4.5. Catalyst layer arrangements;169
15.5;9.5. Automotive Catalysts: Past, Present, and Future;169
15.6;9.6. Catalytic Reactions;169
15.7;9.7. CO(g) Oxidation Without Catalyst (Minimal);171
15.7.1;9.7.1. Gas-gas oxidation kinetics;171
15.8;9.8. Early Catalytic Converter Objectives;171
15.9;9.9. Gaseous Hydrocarbon Oxidation;172
15.10;9.10. Cold Start-up;173
15.11;9.11. Nitrogen Oxide (NOx(g)) Reduction;174
15.11.1;9.11.1. Required gas composition;174
15.11.2;9.11.2. Engine air-fuel ratio control;175
15.11.3;9.11.3. Optimum ceria-zirconia composition;175
15.11.4;9.11.4. Optimum platinum group metal use;176
15.12;9.12. Diesel Engine Pollution Abatement Systems;176
15.12.1;9.12.1. Example soot elimination process;176
15.12.2;9.12.2. Tailpipe emission;179
15.13;9.13. Catalytic Petroleum Cracking;179
15.13.1;9.13.1. Cracking process;179
15.13.2;9.13.2. The catalyst;179
15.13.3;9.13.3. La and Ce in catalyst;180
15.14;9.14. Quantitative Benefits;181
15.14.1;9.14.1. Explanation;181
15.14.2;9.14.2. Hydrothermal stability;181
15.15;9.15. Neodymium Catalysts;182
15.16;9.16. Samarium Catalysts;182
15.17;9.17. Summary;183
15.18;References;184
15.19;Suggested Reading;185
15.20;Appendix 9.1. Tailpipe Gas Composition Control;185
16;Chapter 10: Rare Earths in Rechargeable Batteries;188
16.1;10.1. Chapter Objectives;190
16.2;10.2. Advantages and Disadvantages of Ni-MH Batteries;190
16.3;10.3. Ni-MH Battery Operation;192
16.3.1;10.3.1. Initial charging;192
16.3.2;10.3.2. Discharging (Use);194
16.3.3;10.3.3. Recharging;195
16.3.4;10.3.4. Toyota Prius recharging;195
16.4;10.4. Ni-MH Battery Components (Fetcenko and Koch, 2011; Young and Nei, 2013);196
16.5;10.5. Nickel Hydroxide Electrode;196
16.6;10.6. Alloy (Hydrogen Storage) Electrode;198
16.6.1;10.6.1. Charging side effects at the alloy electrode;198
16.6.2;10.6.2. Alloy choice;198
16.7;10.7. Recycling;199
16.8;10.8. Appraisal;199
16.9;10.9. Summary;200
16.10;References;200
16.11;Suggested Reading;200
17;Chapter 11: Rare Earths in Alloys and Metals;202
17.1;11.1. Chapter Objectives;202
17.2;11.2. Cast Iron;202
17.3;11.3. Ductile Cast Iron;204
17.4;11.4. Industrial Procedures;204
17.5;11.5. Rare Earth Benefits;206
17.6;11.6. Ductile Iron Summary;206
17.6.1;11.6.1. Rare earth metal additions to molten steel;206
17.7;11.7. Rare Earth-Magnesium Alloys;206
17.7.1;11.7.1. Rare earth-magnesium microalloying;207
17.8;11.8. Rare Earth Alloys with Other Metals;208
17.9;11.9. Summary;209
17.10;References;209
17.11;Suggested Reading;210
18;Chapter 12: Polishing with Rare Earth Oxides Mainly Cerium Oxide CeO2;212
18.1;12.1. Introduction, Contents of the Chapter;212
18.2;12.2. Production of Polishing Compounds;213
18.2.1;12.2.1. Classical polishing powder (glass applications);213
18.2.2;12.2.2. Semiconductor polishing slurries;214
18.3;12.3. The Polishing Process;214
18.3.1;12.3.1. The type of glass to be polished;214
18.3.2;12.3.2. The type of slurry system;215
18.3.3;12.3.3. Type of polishing machine/pad being used and glass surface quality;215
18.4;12.4. Industrial Cerium Oxide Polishing;217
18.4.1;12.4.1. Polishing efficiency;217
18.4.2;12.4.2. Glass industry-what kind of glasses to polish?;218
18.4.3;12.4.3. No polishing needed;218
18.4.4;12.4.4. Polishing needed;219
18.4.5;12.4.5. Electronic industry: fine polishing is needed;219
18.5;12.5. Leading Producers of Rare Earth Polishing Powders;220
18.5.1;12.5.1. China;220
18.5.2;12.5.2. Japan;220
18.5.3;12.5.3. Europe;220
18.5.4;12.5.4. USA;221
18.6;12.6. Trivalent Ce3+ and Tetravalent Ce4+ Chemistry;221
18.6.1;12.6.1. Behavior of Ce3+ and Ce4+ in aqueous solution;221
18.6.2;12.6.2. Ce+III and Ce+IV ions in solution;222
18.6.3;12.6.3. Inorganic condensation to CeO2;222
18.6.4;12.6.4. Crystal chemistry of cerium oxides;223
18.6.4.1;CeO2;223
18.6.4.2;Ce2O3;225
18.6.5;12.6.5. Two additional remarks;226
18.7;12.7. A Process to Prepare CeO2 Particles;226
18.7.1;12.7.1. Synthesis of (sub-) micronic ceria powders;226
18.7.2;12.7.2. Synthesis of micronic Ceria colloidal nanoparticles;227
18.8;12.8. Chemical or Mechanical? The CMP Process;228
18.8.1;12.8.1. Introduction;228
18.8.2;12.8.2. Choice of ceria: the Cook model;229
18.8.3;12.8.3. Description of the mechanism;229
18.9;12.9. Summary;232
18.10;References;233
18.11;Suggested Reading;233
19;Chapter 13: Permanent Magnets Based on Rare Earths: Fundamentals;234
19.1;13.1. Introduction;234
19.2;13.2. What Can Be Expected from the Pure RE Metals?;235
19.3;13.3. About Ferromagnetism;238
19.3.1;13.3.1. Hysteresis loop-first quadrant-magnetization curve-remanence;239
19.3.2;13.3.2. Second quadrant-demagnetization-coercitivity;240
19.3.3;13.3.3. Hysteresis loop-maximum energy product BHmax;240
19.3.4;13.3.4. Precision on the units;241
19.3.5;13.3.5. Dependence of magnetization on temperature;241
19.3.6;13.3.6. Requirements for exceptional magnets;242
19.4;13.4. Alloying RE Metals and TM: A Breakthrough in the World of Permanent Magnets;243
19.4.1;13.4.1. The Sm/Co magnets;243
19.4.2;13.4.2. Nd/Fe/B magnets;245
19.5;13.5. Magneto-Crystalline Anisotropy, the Key to the Exceptional Properties;246
19.6;13.6. Qualification, Codification of the RE Magnets;249
19.6.1;13.6.1. What are the changes of the performances with temperature?;249
19.6.2;13.6.2. How to improve the temperature dependence of the Nd-based magnet?;249
19.6.3;13.6.3. Codification of the magnets;250
19.7;13.7. Summary;250
19.8;Suggested Reading;251
20;Chapter 14: Rare Earth-Based Permanent Magnets Preparation and Uses;252
20.1;14.1. Introduction;252
20.2;14.2. The Superiority of the RE Magnets;252
20.3;14.3. Some Limitations of RE Magnets and Current Remedial Strategies;253
20.3.1;14.3.1. Direct substitution of Dy in Nd-Fe-B alloys;254
20.3.2;14.3.2. Substitution of Dy and Tb by grain boundaries diffusion method;255
20.4;14.4. Preparation of RE Magnets by Powder Metallurgy;257
20.4.1;14.4.1. Production of neodymium-iron and dysprosium-iron alloys;257
20.4.2;14.4.2. Production of samarium metal;257
20.4.3;14.4.3. Heating and casting the RE alloys;258
20.4.4;14.4.4. Preparation of fine particles;258
20.4.5;14.4.5. Compaction of the fine particles and magnetic alignment;259
20.4.6;14.4.6. Sintering at high temperature and pulse magnetization;260
20.5;14.5. Some Practical Information Concerning NdFeB Magnets;261
20.5.1;14.5.1. Shaping and surface protection by coating;261
20.5.2;14.5.2. Magnetic orientation;261
20.5.3;14.5.3. Bonded magnets, packaging, and safety issues;261
20.6;14.6. Applications of RE Magnets;263
20.6.1;14.6.1. Applications related to attractive magnetic forces;264
20.6.2;14.6.2. Applications related to power generation;266
20.6.3;14.6.3. Applications related to electrical motors;266
20.6.4;14.6.4. Application related to transducers and sound production;268
20.6.5;14.6.5. Application related to medical applications and imaging;269
20.7;14.7. Summary;270
20.8;Suggested Reading;270
21;Chapter 15: Introduction to Rare Earth Luminescent Materials;272
21.1;15.1. Basics of Luminescence Phenomena;272
21.1.1;15.1.1. Introduction to the luminescence;272
21.1.2;15.1.2. Luminescence characteristics (emission and absorption spectra, efficiency, and decay time);275
21.1.3;15.1.3. Rare earth luminescent materials definition;276
21.2;15.2. Luminescence of Rare Earths;276
21.2.1;15.2.1. Electronic configuration of rare earths;276
21.2.2;15.2.2. Electronic transitions in rare earth-based phosphor materials (4f-4f, 4f-5d, and CT);278
21.2.3;15.2.3. Focus on 4f-4f transitions (intraconfigurational transitions);279
21.2.4;15.2.4. Focus on 4f-5d transitions (interconfigurational transitions);281
21.2.5;15.2.5. Focus on the charge transfer transitions (interconfigurational transition);282
21.2.6;15.2.6. Summary;282
21.3;15.3. The Most Classical Rare Earth-doped Luminescent Materials;283
21.3.1;15.3.1. Eu3+, the most common red emitter;283
21.3.1.1;15.3.1.1. Emission properties;283
21.3.1.2;15.3.1.2. Absorption mechanism;284
21.3.2;15.3.2. Tb3+, the most common green emitter;284
21.3.2.1;15.3.2.1. Emission properties;284
21.3.2.2;15.3.2.2. Absorption mechanism;285
21.3.3;15.3.3. Eu2+, the most common blue emitter;286
21.3.3.1;15.3.3.1. Emission properties;286
21.3.3.2;15.3.3.2. Absorption properties;286
21.3.4;15.3.4. Ce3+, a versatile candidate for phosphor materials;287
21.3.4.1;15.3.4.1. Emission properties;287
21.3.4.2;15.3.4.2. Absorption properties;288
21.3.5;15.3.5. Yb3+ and Er3+, a perfect couple for up-conversion;288
21.3.6;15.3.6. Other cases;289
21.4;15.4. Rare Earth Luminescent Materials: Synthesis Routes;290
21.4.1;15.4.1. Requirements for a good phosphor material;290
21.4.2;15.4.2. The traditional solid-state route;291
21.4.3;15.4.3. The Precursor route;293
21.4.3.1;15.4.3.1. Example of YOX Phosphor (Fig.15.15);294
21.4.3.2;15.4.3.2. Example of LAP Phosphor (Fig.15.16);295
21.5;Appendix 15.1. 4f Energy Levels of rare earths;296
21.6;Appendix 15.2. 5d Energy Levels of rare earths (the Crystal Field Theory);297
21.7;Appendix 15.3. Transition Selection Rules;299
21.8;References;300
21.9;More Specific Paper;300
21.10;Suggested Reading;300
22;Chapter 16: Applications of Rare Earth Luminescent Materials;302
22.1;16.1. Rare earth for lighting application;303
22.1.1;16.1.1. Lighting devices, an overview;303
22.1.1.1;16.1.1.1. Incandescent lamps;304
22.1.1.2;16.1.1.2. Discharge lamps;305
22.1.1.2.1;16.1.1.2.1. High-pressure discharge lamps;305
22.1.1.2.2;16.1.1.2.2. Neon lamps;306
22.1.1.2.3;16.1.1.2.3. Sodium low-pressure discharge lamps;306
22.1.1.2.4;16.1.1.2.4. Mercury low-pressure discharge lamps;307
22.1.1.3;16.1.1.3. Electroluminescent lamps;308
22.1.1.4;16.1.1.4. Short comparison of commercial lamps;309
22.1.2;16.1.2. Focus on trichromatic fluorescent lamps (fluorescent tubes, and CFL);310
22.1.2.1;16.1.2.1. Basics of trichromatic fluorescent lamps;310
22.1.2.2;16.1.2.2. Process manufacturing of fluorescent l311
22.1.2.3;16.1.2.3. Phosphor requirements for fluorescent lamps for general lighting;312
22.1.2.4;16.1.2.4. Evolution of phosphor materials in trichromatic fluorescent lamps for general lighting;313
22.1.2.5;16.1.2.5. Phosphors for other lamp applications;315
22.1.3;16.1.3. Focus on LED and the phosphors;315
22.1.3.1;16.1.3.1. Basics of phosphors converted LED;315
22.1.3.2;16.1.3.2. Phosphor materials used in LED for general lighting;317
22.1.4;16.1.4. Last evolution of the lighting market;318
22.2;16.2. Rare earths for display application;319
22.2.1;16.2.1. Cathode Ray Tube (CRT), the use of electron beam for early color TV;321
22.2.2;16.2.2. PDP (plasma display panels), high photonic excitation;322
22.2.3;16.2.3. The LCD display and their backlighting (CCFL and LED backlights);323
22.2.4;16.2.4. Last evolution of the display market;324
22.3;16.3. Rare earth for medical equipments;324
22.3.1;16.3.1. Focus on x-ray intensifying screens;326
22.3.2;16.3.2. Focus on photostimulated storage phosphor screen;327
22.3.3;16.3.3. Focus on tomography medical equipment: X-ray CT and PET;328
22.3.3.1;16.3.3.1. X-ray computed tomography;330
22.3.3.2;16.3.3.2. PET;331
22.4;16.4. Other Rare Earth Applications;332
22.4.1;16.4.1. Gadolinium as contrast agent for NMR (not luminescent properties);332
22.4.2;16.4.2. Afterglow pigment;333
22.4.3;16.4.3. Rare earth for anti counteracting marking & tagging;334
22.4.3.1;16.4.3.1. Upconversion phosphor;335
22.5;Suggested Reading;335
22.6;Annex16.1. Basics of colorimetry;336
22.6.1;The human eye;336
22.6.2;The trichromatic color diagram;337
23;Chapter 17: Rare Earth Doped Lasers and Optical Amplifiers;340
23.1;17.1. Gain Media;340
23.1.1;17.1.1. Stimulated emission;340
23.1.2;17.1.2. Population inversion;341
23.2;17.2. Optical Amplifiers;342
23.2.1;17.2.1. Erbium doped fiber amplifier (EDFA);342
23.2.2;17.2.2. How an optical amplifier works;344
23.3;17.3. Light Amplification by Stimulated Emission of Radiation;345
23.3.1;17.3.1. Definition of laser;345
23.3.2;17.3.2. How a laser works;346
23.4;17.4. The Rare Earth Candidates for Laser Emission;347
23.4.1;17.4.1. Rare earth doped crystals;348
23.4.2;17.4.2. Rare earth doped glasses;350
23.4.3;17.4.3. Rare earth doped transparent ceramics;350
23.5;17.5. Laser Applications;351
23.5.1;17.5.1. Material processing, manufacturing;351
23.5.2;17.5.2. Medical applications;352
23.6;17.6. Summary;352
23.7;References;353
24;Chapter 18: Rare Earth Recycle;354
24.1;18.1. Extent of Rare Earth Recycle;354
24.1.1;18.1.1. Reasons for this miniscule rare earth recycle extent;354
24.2;18.2. Twenty-first Century Rare Earth Recycle Increase;355
24.3;18.3. Nickel-Metalhydride Rechargeable Battery Recycle;355
24.4;18.4. Industrial Recycle Smelting;357
24.5;18.5. Recycle Furnace Slag Requirements;360
24.5.1;18.5.1. Avoiding glassiness after granulation;360
24.6;18.6. Recovery of Rare Earths from Slag;360
24.7;18.7. Recovery of Ni and Co from the Recycle Furnace Product Alloy;361
24.8;18.8. Offgas Treatment;361
24.9;18.9. Summary of Rare Earth Battery Recycle;361
24.10;18.10. Recovering Rare Earths from End-of-use Fluorescent Lamps;362
24.11;18.11. Phosphors and their Compositions;363
24.11.1;18.11.1. Recycle objective;365
24.12;18.12. The Recycle Process;365
24.12.1;18.12.1. Recovery of phosphor powder from end-of-use fluorescent lamps (Fig. 18.8);366
24.12.2;18.12.2. Rare earth oxide production (Fig.18.9);366
24.12.3;18.12.3. Rare earth phosphate production;366
24.13;18.13. Rare Earth Magnet Recycle;367
24.13.1;18.13.1. End-of-use magnet recycle;368
24.14;18.14. Suggested End-of-Use Rare Earth Magnet Recycle Method;368
24.14.1;18.14.1. In between;368
24.15;18.15. Ceria Polishing Powder Recycle;368
24.16;18.16. Fluid Catalytic [Petroleum] Cracking Catalyst Recycle;369
24.17;18.17. Automobile Emission Reduction Catalyst Recycle;369
24.18;18.18. Current Recycle Activity;369
24.19;18.19. Summary;370
24.20;References;370
24.21;Suggested Reading;371
25;Chapter 19: Epilogue;372
25.1;19.1. World Events;372
25.2;19.2. Consequences;372
25.2.1;19.2.1. Recycling;372
25.2.2;19.2.2. Thrifting;373
25.2.3;19.2.3. Substitition;374
25.3;19.3. Smuggler Responses;375
25.4;19.4. Government Responses to Rare Earth Shortages;377
25.5;19.5. Manufacturing Industry Responses;377
25.6;19.6. Mining/Production Industry Response;377
25.7;19.7. Summary;381
25.8;19.8. Predictions;382
25.9;References;382
25.10;Further Reading;383
26;Index;384
27;Color Plate;392
Chapter 1 Overview
Abstract
In 2014, ~ 90% of rare earth production originates in the mines of Inner Mongolia, China. High-purity (99.9 mass%) rare earth compounds (e.g., oxides) are produced from these ores by physical concentration, leaching, solution purification, solvent extraction separation, and individual rare earth compound precipitation. About 40% of all rare earth production is used in metallic form—for making magnets, battery electrodes, and alloys. Metals are made from the above compounds by high-temperature fused salt electrowinning and/or high-temperature reduction with metallic reductants. Production/consumption of rare earths is ~ 100 kilotonnes of contained rare earth elements per year. The rare earths are mainly consumed in permanent magnets, catalysts, glass polishing powders, rechargeable batteries, and photonics (luminescence, fluorescence, and light amplification devices). Magnets and photonics are expected to grow significantly over the next few years. Keywords Overview Rare earth definition Occurrence Mining Extraction Uses Recycle This book defines rare earths as those elements that are between lanthanum and lutetium on the atomic chart, that is, lanthanum, La cerium, Ce praseodymium, Pr neodymium, Nd promethium, Pm samarium, Sm europium, Eu gadolinium, Gd terbium, Tb dysprosium, Dy holmium, Ho erbium, Er thulium, Tm ytterbium, Yb lutetium, Lu. They are also called lanthanides. In nature, they occur with yttrium (Y) and scandium (Sc), which some authors refer to as rare earths. We discuss these elements, but do not refer to them as rare earths. Lanthanum through samarium account for ~ 98% of rare earths-in-ore, Fig. 1.1. Europium through lutetium account for the remainder (Dent, 2012). Fig. 1.1 Rare earth oxides. Left to right are gadolinium oxide, samarium oxide, neodymium oxide, praseodymium oxide, lanthanum oxide, and cerium oxide. Photo by Peggy Greb, US Department of Agriculture (public domain). The isotopes of promethium are all radioactive with short half-lives. Promethium is never found in nature. The objective of this chapter is to summarize these rare earths in terms of their properties, uses, occurrence, and extraction—in preparation for our book's detailed chapters. 1.1 Exploited Properties
Rare earth elements are always used in combination with other elements. Examples are as follows: (a) as oxides in automobile exhaust pollution abatement catalysts (b) alloyed with transition metals (Ni, Co, Mn) and hydrogen in rechargeable battery electrodes (c) alloyed with magnesium to increase its high temperature strength and decrease its flammability (d) alloyed with transition metals (Fe, Co) to make the world's strongest permanent magnets (e) doped into glass to give specific, reproducible wavelength laser output light and (f) doped into compounds, glasses, and polymers for use in luminescent products, for example, lights and screens. The uniqueness of rare earth properties for many of these uses is a consequence of their blocked 4f electron orbitals. 1.2 Uses
Table 1.1 shows world rare earth consumption in 2012. Cerium, lanthanum, and neodymium were by far the most consumed. The combined consumption of the highest atomic number rare earths (holmium, erbium, thulium, ytterbium, and lutetium) is < 1 kilotonne per year. Table 1.1 Estimate of 2012 World Consumption of Rare Earths Element Atomic Number Estimated 2012 World Consumption of Contained Rare Earth Element (Kilotonnes) Lanthanum 57 22 Cerium 58 39 Praseodymium 59 05 Neodymium 60 16 Samarium 62 2 Europium 63 00.2 Gadolinium 64 1 Terbium 65 00.4 Dysprosium 66 02 Holmium 67 < 1 Erbium 68 < 1 Thullium 69 < 1 Ytterbium 70 < 1 Lutetium 71 < 1 Rare earths are consumed in many forms, for example, as alloys, ceramics, compounds (e.g., oxides), and glasses as shown in Table 1.2. None is used as a structural metal. Gambogi (2013) and author estimates. Table 1.2 shows recent world rare earth consumption by application. Magnets, catalysts, polishing powder, and rechargeable batteries top the list. Other consumptions are smaller but technologically important. Table 1.2 Estimate of Rare Earth Consumption by Use Application Percent of World Rare Earth Element Consumption Permanent magnets 20 Optical materials polishing powder 16 Fluid petroleum cracking catalyst 12 Automobile gaseous pollution abatement catalyst 7 Rechargeable battery electrodes 10 Metallurgy, for example, rare earth-magnesium alloys 9 Phosphors 8 Glass additives 6 Ceramics 5 Other 7 Permanent magnets, catalysts, polishing powders, and rechargeable battery electrodes are the largest applications. Gambogi (2013), Gschneidner (2011), Goonan (2011), and author estimates. 1.3 Occurrence
Rare earths occur mainly in bastnasite (RE)FCO3 [where RE = rare earth elements] and monazite (RE)PO4 ores (Jones et al., 1996). The ores typically contain 5-15 mass% rare earth elements. About 90% of mined rare earths come from these minerals (Gupta and Krishnamurthy, 2005): 70% from bastnasite and 20% from monazite. A considerable percentage of monazite also occurs in beach sand deposits, mostly in India. A growing source of rare earth elements are rare earth cation adsorption clays, particularly in subtropical Asia, mainly China. These clays consist of rare earth cations adsorbed on clay (often muscovite) particles. The rare earth cations are easily removed from these ores by ion exchange with ammonium chloride solutions. However, the ores contain only 0.2-0.3 mass% rare earth elements, so large amounts of ore must be treated per tonne of recovered rare earth elements. Rare earth mines are mapped in Chapter 2. 1.4 Mines and Mining
Most rare earth ores are found on or near the earth's surface. They are mined by surface (open pit) methods, Fig. 1.2. Fig. 1.2 Mountain Pass open pit mine, Mountain Pass, California (35.5° N; 115.5° W). A truck is being loaded at the bottom of the pit (center-left). Roads for trucking ore up out of the pit are noticeable. This mine started production in 1952. It closed in 2002 but reopened in 2012. The world's largest mine (also open pit) is the Bayan Obo mine in Inner Mongolia, China (41.8° N; 110.0° E). It is reported to (i) be producing ~ 100 kilotonnes of rare earth elements per year and to (ii) have a reserve of 40 megatonnes of rare earths in ore (Qifan et al., 2010). Photo courtesy Molycorp, Inc. Open pit mining (Figs. 1.2 and 3.1) entails the following: (a) removing worthless overburden from atop the ore body (Hartman and Mutmansky, 2002) (b) blasting and removing ore from a central location on the ore body surface (c) building roads for bringing ore up to the surface and over to the rare earth element extraction plants (d) gradually deepening and widening the mine by blasting, ore removal, and road building until the ore body is fully exploited. Of course, the ore body is not uniform in rare earth concentration. Some of the blasted material is low-grade waste—it is trucked to a storage site. Only high-grade “ore” is sent to the rare earth extraction plants. This and ore fragmentation are detailed in Chapter 3. 1.5 Rare Earth [RE] Extraction
The ore from open pit mining contains the following: (a) rare earth...