E-Book, Deutsch, 279 Seiten, eBook
Lütkebohmert Codierungstheorie
2003
ISBN: 978-3-322-80233-0
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
Algebraisch-geometrische Grundlagen und Algorithmen
E-Book, Deutsch, 279 Seiten, eBook
Reihe: vieweg studium; Aufbaukurs Mathematik
ISBN: 978-3-322-80233-0
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
0 Einleitung.- 0.1 Das Problem der Codierungstheorie.- 0.2 Der binäre symmetrische Kanal.- 0.3 Beispiel eines fehlerkorrigierenden Codes.- 0.4 Satz von Shannon.- 1 Lineare Codes.- 1.1 Allgemeine Theorie.- 1.2 Hamming Codes.- 1.3 Beispiel eines BCH-Codes.- 1.4 Der duale Code.- 1.5 Reed-Muller-Codes.- 2 Spezielle gute Codes.- 2.1 Hadamard Codes.- 2.2 Binäre Golay-Codes.- 3 Zyklische Codes.- 3.1 Grundlagen und Definitionen.- 3.2 Idempotente eines zyklischen Codes.- 3.3 BCH-Codes.- 3.4 Codierer für zyklische Codes.- 3.5 Decodierung von BCH-Codes.- 4 Reed-Solomon-Codes.- 4.1 RS-Codes.- 4.2 Interleaving.- 4.3 Codierung auf Speichermedien.- 5 Schranken für Codes.- 5.1 Gilbert-Varshamov Schranke.- 5.2 Obere Schranken.- 6 Geometrische Codes.- 6.1 Algebraische Kurven.- 6.2 Definitionen und erste Eigenschaften.- 6.3 Klassische Goppa-Codes.- 6.4 Schranken für geometrische Codes.- 6.5 Kurven mit vielen rationalen Punkten.- 7 Rationale Punkte auf algebraischen Kurven.- 7.1 Zetafunktion einer algebraischen Kurve.- 7.2 Rationalität der Zetafunktion.- 7.3 Riemannsche Vermutung im Kurvenfall.- 7.4 Schranken für die Anzahl der Punkte.- 8 Geometrie der algebraischen Kurven.- 8.1 Ebene Kurven.- 8.2 Desingularisierung von Kurven.- 8.3 Satz von Riemann-Roch.- 8.4 Residuensatz.- 8.5 Hurwitzsche Geschlechterformel.- 9 Implementierung von geometrischen Codes.- 9.1 Codierung.- 9.2 Decodierung nach Skorobogatov und Vladut.- 9.3 Decodierung nach Feng und Rao.- A Kommutative Algebra.- A.1 Galoistheorie.- A.2 Endliche Körper.- A.3 Ganze Ringerweiterungen.- A.4 Affine Algebren.- A.5 Differentiale.- B Algebraische Geometrie.- B.l Affine Varietäten.- B.2 Varietäten.- B.3 Eigenschaften von Morphismen.