Buch, Englisch, 344 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 453 g
Buch, Englisch, 344 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 453 g
Reihe: Emerging Materials and Technologies
ISBN: 978-1-032-55552-2
Verlag: Taylor & Francis Ltd
This book demonstrates the necessity of novel methods for the development of nano-structured energy materials with improved characteristics for real-life applications. It explores the prospective of nanoscale science to design and build device technology through novel nanoscale photodetectors, photoconductors, photovoltaics, solar cells, batteries, supercapacitors, fuel cells, hydrogen generation and storage, and so forth. Various kinds of organic, inorganic, and organic–inorganic multilayer thin-film photovoltaic solar cell devices are also addressed.
Features:
- Discusses nanotechnology for the development of energetic nanostructured materials and their device applications
- Combines all three types of nanostructured materials, organic, inorganic, and perovskite, and explores their applications at the device level
- Articulates kinds of preparation methods for advanced energy-related nano-materials and their functionalization for a variety of devices
- Explores the consequence of economizing and combination of 0D, 1D, and 2D nanomaterials to meet the future energy demand
- Establishes the wide range of applications of energetic nanomaterials in photovoltaics (including organic and inorganic)
This book is aimed at graduate students and researchers in photovoltaics, batteries and energy storage, and thermoelectrics.
Zielgruppe
Academic and Postgraduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Contents
Foreword xv
Preface xvii
Editor Biographies xxiii
Contributor List xxv
Chapter 1 Introduction to nanostructured energy materials and their applicability 1
Abhay Kumar Singh
1.1 Introduction 1
1.2 Classification of nanomaterials 3
1.2.1 Zero-dimensional materials 3
1.2.2 One-dimensional materials 4
1.2.3 Two-dimensional materials 5
1.2.4 Three-dimensional materials 6
1.2.5 Nanostructures 7
1.2.6 Nanoparticles 8
1.2.7 Nanowires and nanotubes 9
1.2.8 Nanolayers or nanocoatings 9
1.2.9 Nanoporous materials 9
1.3 Strategies of nanomaterials synthesis 9
1.3.1 Chemical approaches 10
1.3.1.1 Sol–gel method 11
1.3.1.2 Hydro/solvothermal process 12
1.3.1.3 Polyol method 13
1.3.1.4 Sonochemical process 13
1.3.1.5 Microemulsion process 14
1.3.1.6 Chemical vapor deposition process 14
1.3.1.7 Atomic layer deposition (ALD) process 15
1.4 Physical methods 16
1.4.1 Mechanical approach 16
1.4.1.1 Ball milling method 16
1.4.1.2 Melt mixing approach 16
1.4.1.3 Inert-gas technique 17
1.4.1.4 Pulse vapor deposition method 17
1.4.1.5 Pulsed laser deposition method 18
1.4.1.6 Electron beam vapor deposition method 18
1.4.1.7 Sputtering deposition method 18
1.4.1.8 Arc deposition method 19
1.4.1.9 Laser pyrolysis method 19
1.4.1.10 Flash spray pyrolysis method 20
1.5 Energetic applications of the nano materials 20
1.5.1 Photovoltaic solar cells 20
1.5.1.1 Silicon and thin-film solar cells 21
1.5.1.2 Multijunction solar cells 22
1.5.1.3 Organic solar cells 23
1.5.1.4 Dye-sensitized solar cells (DSSCs) 23
1.5.1.5 Quantum dots-sensitized solar cells
(QDSSCs) 25
1.5.2 Carbon nanotubes for optoelectronics 27
1.5.3 Graphene for optoelectronics 30
1.5.4 Transition-metal dichalcogenides 31
1.6 Conclusions 33
References 33
Chapter 2 Photovoltaic energy material nano-structuration and functionalization 45
Mohanraj Kumar, Sandhiya Murugan,
S. Selvaraj, Mohd Shkir and Jih-Hsing Chang
2.1 Introduction 45
2.2 Photovoltaic energy basics 46
2.2.1 How photovoltaic cells work 46
2.2.2 Types of photovoltaic cells 47
2.2.3 Efficiency and challenges 47
2.3 Nano-structuration in photovoltaic materials 48
2.3.1 Principles of nano-structuration 48
2.3.2 Benefits of nano-structuration 49
2.3.3 Nano-structured materials for photovoltaics 49
2.3.4 Techniques for nano-structuration 49
2.4 Functionalization of photovoltaic materials 50
2.4.1 Introduction to functionalization 50
2.4.2 Purpose and advantages of functionalization 50
2.4.3 Types of functionalization in photovoltaics 50
2.4.4 Methods for functionalization 51
2.5 Types of nano-structuration and functionalization 52
2.5.1 Surface nano-structuration 52
2.5.1.1 Surface texturing 52
2.5.1.2 Nanoparticle deposition 52
2.5.2 Bulk nano-structuration 53
2.5.2.1 Quantum dots 53
2.5.2.2 Nanowires 53
2.5.3 Chemical functionalization 54
2.5.3.1 Passivation layers 54
2.5.3.2 Dye sensitization 54
2.6 Methods for nano-structuration and functionalization 54
2.6.1 Physical methods 54
2.6.1.1 Chemical vapor deposition (CVD) 55
2.6.2 Chemical methods 56
2.6.2.1 Sol-gel process 56
2.6.2.2 Chemical bath deposition (CBD) 56
2.6.3 Hybrid methods 56
2.6.3.1 Electrochemical deposition 57
2.6.3.2 Atomic layer deposition (ALD) 57
2.7 Applications and case studies 57
2.7.1 Nano-structured photovoltaic materials
in solar cells 57
2.7.2 Functionalized photovoltaic materials for
enhanced performance 57
2.7.3 Success stories and research developments 57
2.8 Challenges and future directions 58
2.8.1 Challenges in nano-structuration and
functionalization 58
2.8.2 Future trends and innovations 58
2.8.3 Sustainability and environmental considerations 58
2.9 Conclusion 58
References 59
Chapter 3 Zero-dimensional (0D) nanomaterials and their energy applications 62
Abhay Kumar Singh
3.1 Overview 62
3.2 Nanomaterial unique features 63
3.2.1 Surface area 64
3.2.2 Quantum effects 64
3.2.3 Thermal and electrical conductivity 64
3.2.4 Magnetism 64
3.2.5 Mechanical properties 65
3.2.6 Catalytic support 65
3.2.7 Antimicrobial activity 65
3.3 Types of low-dimensional nanomaterials 65
3.4 Zero-dimensional (0D) nanomaterials 65
3.5 Zero-dimensional nanomaterials in biosensing 66
3.5.1 0D Nanoparticles 67
3.5.2 0D QDs nanostructures 68
3.5.3 0D Fullerene 69
3.5.4 0D Nanospike 71
3.5.5 Carbon quantum dots (CQDs) 72
3.5.6 Graphene quantum dots (GQDs) 78
3.5.7 Inorganic quantum dots (IQDs) 80
3.5.8 Magnetic nanoparticles (MNPs) 84
3.6 Zero-dimensional nanomaterials in photovoltaic 86
3.6.1 Significant features of photovoltaic cell construction 87
3.6.2 Zero-dimensional perovskites 88
3.6.2.1 Zero-dimensional halide perovskite structure 90
3.6.2.2 Zero-dimensional halide perovskites crystal growth 91
3.6.3 Zero-dimensional halide perovskites applications 91
3.6.3.1 Optoelectronics 91
3.6.3.2 Light-emitting diodes 93
3.6.3.3 Photodetectors 94
3.6.3.4 Solar cells 95
3.6.3.5 Laser 97
3.7 Conclusions 98
References 98
Chapter 4 1D nanomaterials and their energy applications 111
Ziaul Raza Khan and Mohd Shkir
4.1 Introduction 111
4.2 1D nanomaterials 112
4.3 Development of 1D nanomaterials 112
4.3.1 Chemical vapor deposition 112
4.3.2 Chemical vapor transport 112
4.3.3 Metal organic chemical vapor deposition 113
4.3.4 Hydrothermal 113
4.3.5 Electrospinning 113
4.3.6 Template-assisted synthesis 115
4.4 1D nanomaterials physical properties 115
4.4.1 Optical properties 115
4.4.2 Electrical properties 116
4.5 Applications of 1D nanomaterials for green energy harvesting 116
4.6 Conclusions and future prospects 119
References 119
Chapter 5 Two-dimensional nanomaterials and their energy applications 123
Abhay Kumar Singh
5.1 Introduction 123
5.2 Classification of 2D materials 126
5.2.1 2D metal nanomaterials 127
5.2.2 Layered hydroxides 128
5.2.3 Metal-organic framework 130
5.2.4 Xenes 132
5.2.5 Covalent organic framework 135
5.3 2D materials energetic applications 137
5.4 2D materials for photovoltaic application 138
5.4.1 2D perovskite solar cells (PSCs): a brief outline 139
5.4.2 Monoelemental 2D materials for PSCs 140
5.4.3 Transparent conductive electrode (TCE) 142
5.4.4 Electron transporting layer (ETL) 142
5.4.5 Perovskite layer (PL) 143
5.4.6 HTL 147
5.4.7 Conductive back electrode 148
5.5 Dye-sensitized solar cells (DSSCs) 151
5.5.1 2D-NL-based DSSCs 152
5.5.2 Graphene-based DSSCs 153
5.5.3 TiO2-based DSSCs 153
5.5.4 MXene-based DSSCs 155
5.5.5 Black phosphorus (BP)-based DSSCs 155
5.5.6 Chalcogen 2D-NL-based DSSCs 157
5.6 Conclusions 158
References 159
Chapter 6 3D Nanomaterials and their energy applications 175
Valparai Surangani Manikandan,
Arun Thirumurugan,
Krishnamoorthy Shanmugaraj,
Dhandayuthapani Thiyagarajan,
Ranjith Kumar Poobalan,
Natarajan Chidhambaram,
Nagarajan Dineshbabu,
Kalpana Kalyanasundaram, and
Dhanabalan Shanmuga Sundar
6.1 Introduction 175
6.2 Preparation of 3D nanomaterials 179
6.3 3D Nanomaterials for energy storage 188
6.3.1 3D nanomaterials for supercapacitors 188
6.3.2 3D Nanomaterials for batteries 196
6.3.3 3D nanomaterials for energy conversionelectrocatalytic water splitting (HER, OER) 204
6.4 Conclusion 211
Acknowledgments 212
References 212
Chapter 7 Advanced nanostructured thin films of organic materials for photovoltaic solar cells applications 216
M. Aslam Manthrammel and Mohd Shkir
7.1 Introduction 216
7.1.1 Classification of solar cells 216
7.1.2 Next-generation (third-generation) solar cells 216
7.1.3 Dye-sensitized and quantum dot-sensitized solar cells (DSSCs and QDSSCs) 217
7.1.4 Perovskite solar cells (PSCs) 219
7.2 Organic solar cells (OSCs) 220
7.2.1 Working principle of OSCs 220
7.2.2 Materials 221
7.2.3 Device architectures 221
7.2.3.1 Bilayer OSC fabrication or planar heterojunction architecture 221
7.2.3.2 Bulk heterojunction (BHJ) configuration 222
7.2.3.3 Inverted geometry 223
7.2