E-Book, Englisch, 483 Seiten
Martens / Brown Computer Aided Architectural Design Futures 2005
1. Auflage 2005
ISBN: 978-1-4020-3698-9
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the 11th International CAAD Futures Conference held at the Vienna University of Technology, Vienna, Austria, on June 20-22, 2005
E-Book, Englisch, 483 Seiten
ISBN: 978-1-4020-3698-9
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
MARTENS Bob and BROWN Andre Co-conference Chairs, CAAD Futures 2005 Computer Aided Architectural Design is a particularly dynamic field that is developing through the actions of architects, software developers, researchers, technologists, users, and society alike. CAAD tools in the architectural office are no longer prominent outsiders, but have become ubiquitous tools for all professionals in the design disciplines. At the same time, techniques and tools from other fields and uses, are entering the field of architectural design. This is exemplified by the tendency to speak of Information and Communication Technology as a field in which CAAD is embedded. Exciting new combinations are possible for those, who are firmly grounded in an understanding of architectural design and who have a clear vision of the potential use of ICT. CAAD Futures 2005 called for innovative and original papers in the field of Computer Aided Architectural Design, that present rigorous, high-quality research and development work. Papers should point towards the future, but be based on a thorough understanding of the past and present.
Autoren/Hrsg.
Weitere Infos & Material
1;Table of Contents;5
2;Foreword;11
2.1;ACKNOWLEDGEMENTS;12
3;Keynote Papers;14
3.1;Digitally Sponsored Convergence of Design Education, Research and Practice;15
3.1.1;1 BACKGROUND;15
3.1.2;2. HISTORY;17
3.1.3;3. PRE-DIGITAL INTERVENTION;19
3.1.4;4. DIGITAL INTERVENTION;20
3.1.5;5. BESPOKE SOFTWARE;22
3.1.6;6. TRANSDISCIPLINARY DESIGN COLLABORATION;25
3.1.7;7. POST DIGITAL TRANSDISCIPLINARY DESIGN COLLABORATION: ‘ SHOAL FLY BY’;28
3.1.8;8. POST DIGITAL TRANSDISCIPLINARY DESIGN COLLABORATION: ‘ THE POLITICS OFWATER’;32
3.1.9;9. CONCLUDING COMMENTS;33
3.1.10;ACKNOWLEDGEMENTS;34
3.2;Space, Time, Mind;35
3.2.1;1 MOTIVATION;35
3.2.2;2 ELEMENTS;37
3.2.3;3 REPRESENTATION;38
3.2.3.1;3.1 Product and Process;38
3.2.3.2;3.2 Generation of the Representation;41
3.2.3.3;3.3 Actualization of the Representation;44
3.2.4;4 CONTROL SEMANTICS;49
3.2.5;5. CONCLUSION;51
3.2.6;ACKNOWLEDGMENT;51
3.2.7;REFERENCES;51
3.3;Constructing Complexity;53
4;Virtual Heritage, Reconstruction and Histories;63
4.1;Labyrinthine Digital Histories;65
4.1.1;1 INTRODUCTION;65
4.1.2;2 THE PAST RECLAIMED;66
4.1.3;3 FUTURE OF THE DIGITAL PAST;68
4.1.4;4 INTERPRETIVE DIGITAL RECONSTRUCTIONS;69
4.1.4.1;4.1 Conceptual Framework;71
4.1.5;5 CONCLUSION;73
4.1.6;ACKNOWLEDGEMENTS;73
4.1.7;REFERENCES;73
4.2;A 3D Model of the Inner City of Beijing;75
4.2.1;1 INTRODUCTION;75
4.2.2;2 URBAN SPATIAL STRUCTURE;76
4.2.3;3 3D MODEL OF AN URBAN SPATIAL STRUCTURE;76
4.2.3.1;3.1 Data Acquisition;77
4.2.3.2;3.2 Modeling Process;79
4.2.3.3;3.3 Modelling Results;80
4.2.4;4 APPLICATIONS OF THE DIGITAL MODEL;80
4.2.4.1;4.1 Spatial-structure Analysis;82
4.2.4.2;4.2 Contradictions;82
4.2.4.3;4.3 Future Prediction;83
4.2.5;5 CONCLUSION;83
4.2.6;6 ACKNOWLEDGEMENT;84
4.2.7;REFERENCES;84
4.3;A Method Proposed for Adoption of Digital Technology in Architectural Heritage Documentation;85
4.3.1;1 INTRODUCTION;85
4.3.2;2 BACKGROUND;86
4.3.2.1;2.1 Previous Research Dealing with the Subject;86
4.3.2.2;2.2 Recording of Architectural Heritage in Poland;87
4.3.3;3 PROJECT DESCRIPTION;89
4.3.3.1;3.1 Project Principles;89
4.3.3.2;3.2 Addressed Issues;91
4.3.4;4 CONCLUSIONS;93
4.3.5;REFERENCES;94
4.4;From Architectural Intent to Physical Model;95
4.4.1;1 INTRODUCTION;95
4.4.2;2 LASER SCANNING;97
4.4.3;3 GEOMETRIC MODELING;98
4.4.4;4 RAPID PROTOTYPING;101
4.4.5;5 CONCLUSIONS AND POSSIBLE DEVELOPMENTS;103
4.4.6;ACKNOWLEDGMENTS;103
4.4.7;REFERENCES;103
4.5;Interactive Visualization of Large-Scale Architectural Models over the Grid;105
4.5.1;1 INTRODUCTION;105
4.5.2;2 RELATED WORK;106
4.5.3;3 A NEWGRID-ENABLED VISUALIZATION INFRASTRUCTURE;107
4.5.4;4 MULTI-STAGE DATA COMPRESSION;110
4.5.4.1;4.1 Data Pre-Processing;110
4.5.4.2;4.2 Rendering Stage;111
4.5.4.3;4.3 Remote Display Stage;112
4.5.5;5 PROTOTYPE DEVELOPMENT;112
4.5.6;6 CONCLUSION;113
4.5.7;ACKNOWLEDGEMENTS;113
4.5.8;REFERENCES;113
5;Digital Design, Representation and Visualization;115
5.1;Townscaping: Development of Dynamic Virtual City Augmented 3D Sketch Design Tools;117
5.1.1;1 INTRODUCTION;117
5.1.2;2 SUCOD: A WEB-BASED PLATFORM FOR GENERATINGUSER- DEFINED 3D CITY MODELS;118
5.1.3;3 TOWNSCAPING: DYNAMIC VIRTUAL CITY AUGMENTED 3D SKETCH DESIGN;120
5.1.4;4 CURRENT IMPLEMENTATION AND A WORKED EXAMPLE;121
5.1.5;5 INITIAL FEEDBACK ON TOWNSCAPING AND TOPICS FOR FURTHER RESEARCH;125
5.1.6;REFERENCES;126
5.2;Towards a Virtual Reality Tool for Lighting;127
5.2.1;1 INTRODUCTION;127
5.2.2;2 BACKGROUND;128
5.2.2.1;2.1 Solar Effects;128
5.2.2.2;2.2 Virtual reality in architectural and urban field;129
5.2.3;3 EXPERIMENTAL STUDY;130
5.2.3.1;3.1 Experiment Study Area;131
5.2.3.2;3.2 Procedure and Tasks;132
5.2.4;4 RESULTS;133
5.2.4.1;4.1 Subjects’ Judgements Space Division;133
5.2.4.2;4.2 Evaluation Listing;133
5.2.4.3;4.3 Conditions of Solar Effects Generation;134
5.2.4.4;4.4 Discussion;134
5.2.5;5 CONCLUSION;135
5.2.6;REFERENCES;136
5.3;A Visual Landscape Assessment Approach for Highdensity Urban Development;137
5.3.1;1 INTRODUCTION;137
5.3.2;2 CONCEPT OF THE METHODOLOGY;138
5.3.2.1;2.1 Visual Perception and Recourse Qualities;139
5.3.2.2;2.2 GIS Support;139
5.3.3;3 THE FIRST CASE STUDY;140
5.3.3.1;3.1 Visual Quality Assessment;140
5.3.3.2;3.2 Evaluation of Impacts to Surrounding Environment;142
5.3.4;4 DISCUSSION AND FUTURE RESEARCH;144
5.3.4.1;4.1 Methodological Improvement;144
5.3.4.2;4.2 Potential Fields of Application;144
5.3.5;5 CONCLUSION;145
5.3.6;REFERENCES;145
5.4;Architectural Cinematographer: An Initial Approach to Experiential Design in Virtual Worlds;147
5.4.1;1 INTRODUCTION;147
5.4.2;2 RELATED WORK;149
5.4.3;3 ARCHITECTURAL CONCEPTS AND CINEMATOGRAPHY;149
5.4.3.1;3.1 Encoding Cinematography;150
5.4.3.2;3.2 Architectural Concepts;152
5.4.4;4 ARCHITECTURAL CINEMATOGRAPHER;152
5.4.4.1;4.1 System;152
5.4.4.2;4.2 Example;153
5.4.5;5 CONCLUSIONS;154
5.4.6;REFERENCES;156
5.5;Virtual Environments in Design and Evaluation:;157
5.5.1;1 INTRODUCTION;157
5.5.1.1;1.1 Home Modification Process;158
5.5.1.2;1.2 Virtual Reality and Environmental Modification;158
5.5.2;2 HABITEST – DESIGN AND INPLEMENTATION;159
5.5.2.1;2.1 Selection of the Simulation Platform;159
5.5.2.2;2.2 HabiTest: Designing the Key-Features;160
5.5.3;3 INITIAL EVALUATION OF “HABITEST” BY USERS;161
5.5.3.1;3.1 Initial Usability Testing;161
5.5.3.2;3.2 Ongoing Usability Testing of the HabiTest;162
5.5.4;4 CONCLUSIONS;165
5.5.5;References;166
5.6;Do We Need CAD during Conceptual Design?;167
5.6.1;1 INTRODUCTION;167
5.6.2;2 THE NEED FOR EXTERNAL REPRESENTATIONS;168
5.6.3;3 METHOD;169
5.6.3.1;3.1 Experimental Conditions;170
5.6.3.2;3.2 Assessment of the Design Outcome;171
5.6.4;4 RESULTS;172
5.6.5;5 IMPLICATIONS FOR CAAD;174
5.6.6;REFERENCES;175
5.7;Contemporary Digital Techniques in the Early Stages of Design;177
5.7.1;1 INTRODUCTION;177
5.7.2;2 THE PROJECT;179
5.7.2.1;2.1 Initial Study;179
5.7.2.2;2.2 Linked Study;181
5.7.2.3;2.3 Second Study;183
5.7.3;3 CONCLUSIONS;184
5.7.4;REFERENCES;185
5.8;Optimizing Architectural Layout Design via Mixed Integer Programming;187
5.8.1;1 INTRODUCTION;187
5.8.2;2 OPTIMIZATION OF GEOMETRY;188
5.8.2.1;2.1 Design Variables and Parameters;188
5.8.2.2;2.2 Objective of Problem;189
5.8.2.3;2.3 Layout Design Constraints;189
5.8.3;3 SOFTWARE DEVELOPMENT;192
5.8.4;4 EXPERIMENTS;193
5.8.4.1;4.1 Computation time of GLPK;193
5.8.4.2;4.2 Layout Design with Multiobjectives;194
5.8.4.3;4.3 Comparison between MIP and Nonlinear Programming;194
5.8.4.4;4.4 Practical Case Study;195
5.8.5;5 CONCLUSION;196
5.8.6;REFERENCES;196
6;Design Methods, Process and Creativity;197
6.1;Examining Learning in Multiple Settings;199
6.1.1;1 INTRODUCTION;199
6.1.2;2 LEARNING AND THE DESIGN PROCESS;200
6.1.3;3 CODING SCHEMA;202
6.1.3.1;3.1 Goldschmidt’s Linkograph and Schön’s “Framingmoving- reflecting” Model;204
6.1.3.2;3.2 Validation;204
6.1.4;4 RESULTS AND DISCUSSION;205
6.1.5;5 CONCLUSION;207
6.1.6;REFERENCES;207
6.2;Using Historical Know-how to Model Design References;209
6.2.1;1 INTRODUCTION;209
6.2.2;2 BACKGROUND;210
6.2.2.1;2.1 Historical Study;210
6.2.2.2;2.2 On the Role of References;210
6.2.3;3 COMPUTER APPROACHES TO REFERENCES;212
6.2.3.1;3.1 Reference Data Bases;212
6.2.3.2;3.2 Case-based Reasoning (CBR) - Case-based Design;213
6.2.3.3;3.3 Prototypes;214
6.2.4;4 METHODOLOGY;214
6.2.4.1;4.1 Modeling the Generating Actions;214
6.2.4.2;4.2 Models of References;215
6.2.4.3;4.3 Structure of the Design Pedagogy Assistant;216
6.2.5;5 VALIDATION AND DISCUSSION;217
6.2.6;REFERENCES;218
6.3;Semantic Roomobjects for Conceptual Design Support;219
6.3.1;1 INTRODUCTION;219
6.3.2;2 MOTIVATION FOR SEMANTIC MODELLING;220
6.3.3;3 INTEGRATED CONCEPTUAL DESIGN SUPPORT;221
6.3.4;4 KNOWLEDGE REPRESENTATION;224
6.3.5;5 CONSISTENCY ANALYSES;226
6.3.6;6 CONCLUSION;227
6.3.7;REFERENCES;228
6.4;Shared Design Space;229
6.4.1;1 INTRODUCTION;229
6.4.2;2 WIKI;230
6.4.2.1;2.1 Comparison with Web based Threaded Discussion Lists;231
6.4.2.2;2.2 Examples of Possible Ways to Structure Wiki;231
6.4.3;3 ANALYSIS OF EMAIL;232
6.4.3.1;3.1 Semantic Convergence;232
6.4.3.2;3.2 Project Language;232
6.4.3.3;3.3 Empathetic Conformity and Modal Issues;233
6.4.3.4;3.4 Targeting Information: Structural and Ontological Links;233
6.4.4;4 EARLY CASE STUDIESWITHWIKI;234
6.4.5;5 FINDINGS;234
6.4.6;6 PROPOSALS TO AUGMENTWIKI;235
6.4.7;7 CONCLUSIONS;236
6.4.8;REFERENCES;237
7;Knowledge Based Design and Generative Systems;239
7.1;Generation of Apparently Irregular Truss Structures;241
7.1.1;1 INTRODUCTION: IRREGULARITY AND ITS COST;241
7.1.2;2 THE BEIJING SWIMMING CENTRE;243
7.1.3;3 BOTTOM-UP: VORONOI-BASED FOAMS;245
7.1.4;4 TOP-DOWN: DERIVATION OF THE OCTET-TRUSS;246
7.1.5;5 INTEGRATING BOTTOM-UP AND TOP-DOWN;247
7.1.6;6 CONCLUSION;249
7.1.7;ACKNOWLEDGEMENTS;250
7.1.8;REFERENCES;250
7.2;Dynamic Designs of 3D Virtual Worlds Using Generative Design Agents;251
7.2.1;1 INTRODUCTION: 3D VIRTUAL WORLDS;251
7.2.2;2 AGENT MODELS FOR 3D VIRTUAL WORLDS;252
7.2.3;3 GENERATIVE DESIGN AGENT MODEL;253
7.2.4;4 GENERATIVE DESIGN GRAMMAR;255
7.2.4.1;4.1 Generative Design Grammar Framework;256
7.2.4.2;4.2 Generative Design Grammar Application;259
7.2.5;5 CONCLUSION;259
7.2.6;REFERENCES;260
7.3;Using Cellular Automata to Generate High-Density Building Form;261
7.3.1;1 THE CHALLENGE OF VARIETY;261
7.3.2;2 GENERATING VARIETY;263
7.3.3;3 CELLULAR AUTOMATA FOR ARCHITECTURE;264
7.3.4;4 DESIGNING WITH CELLULAR AUTOMATA: AN EXAMPLE IMPLEMENTATION;267
7.3.5;5 CONCLUSION;269
7.3.6;REFERENCES;269
7.4;Dynamic Generative Modelling System for Urban and Regional Design;271
7.4.1;1 INTRODUCTION;271
7.4.2;2 THE GENERATIVE MODELLING SYSTEM;272
7.4.2.1;2.1 Datasets;272
7.4.2.2;2.2 Tasks;273
7.4.2.3;2.3 Workflow;274
7.4.3;3 INTERACTING TASKS;274
7.4.3.1;3.1 Macro-Scale;274
7.4.3.2;3.2 Micro-Scale;275
7.4.4;4 CASE PROJECT;275
7.4.4.1;4.1 Macro-Scale Tasks;276
7.4.4.2;4.2 Micro-Scale Tasks;276
7.4.4.3;4.3 Ordinary Dynamic Scenario;279
7.4.5;5 CONCLUSION;279
7.4.6;REFERENCES;280
7.5;Turning the Design Process Downside-up;281
7.5.1;1 INTRODUCTION;281
7.5.2;2 GROWING A FOREST OF COLUMNS;282
7.5.2.1;2.1 Defining the Task;282
7.5.2.2;2.2 Designing a Dynamic Model;283
7.5.2.3;2.3 Programming the Simulation;285
7.5.2.4;2.4 Letting Loose the Columns;286
7.5.2.5;2.5 From Generating to Building;287
7.5.3;3 RESULTS;287
7.5.3.1;3.1 Design for Emergence;288
7.5.3.2;3.2 Calming the System;288
7.5.3.3;3.3 Finding the Right Parameter Values;288
7.5.3.4;3.4 Programming Further Simulations;289
7.5.4;4. CONCLUSION;289
7.5.5;REFERENCES;290
8;Human-machine Interaction: Connecting the Physical and the Virtual;291
8.1;iSphere;293
8.1.1;1 INTRODUCTION;293
8.1.2;2 RELATED WORK;294
8.1.3;3 INTERACTIVE TECHNIQUE;295
8.1.3.1;3.1 Realistic Interaction;296
8.1.3.2;3.2 Play and Build;297
8.1.4;4 IMPLEMENTATION;297
8.1.5;5 PILOT EXPERIMENT;298
8.1.5.1;5.1 Experimental Set-up;298
8.1.5.2;5.2 Experimental Results and Discussion;300
8.1.6;6 DISCUSSION;301
8.1.7;REFERENCES;302
8.2;Learning Design with Digital Sketching;303
8.2.1;1 INTRODUCTION, TECHNOLOGY & PRECEDENTS;303
8.2.1.1;1.1 Hypothesis;304
8.2.2;2 RESEARCH METHOD;305
8.2.3;3 DATA;305
8.2.3.1;3.1 Step-Sequencing Survey;306
8.2.3.2;3.2 Design Sequence Colour Bars;307
8.2.4;4 ANALYSIS;310
8.2.4.1;4.1 Step-Sequencing Survey Results;310
8.2.4.2;4.2 Design Sequence Colour Bar Analysis;310
8.2.4.3;4.3 Quality Criteria;310
8.2.5;5 CONCLUSIONS;311
8.2.6;REFERENCES;312
8.3;Simulating Human Behaviour in Built Environments;313
8.3.1;1 INTRODUCTION;313
8.3.2;2 BEHAVIOUR TRACKING AND ANALYSING;314
8.3.3;3 USABILITY-BASED BUILDING MODEL;315
8.3.3.1;3.1 Geometry Modelling;316
8.3.3.2;3.2 Usability Modelling;316
8.3.4;4 AGENT-BASED VIRTUAL USER MODEL;317
8.3.4.1;4.1 Geometry Modelling;317
8.3.4.2;4.2 Perception Modelling;318
8.3.4.3;4.3 Behaviour Modelling;318
8.3.5;5 SIMULATION AND RESULTS;320
8.3.5.1;5.1 2D Simulation;320
8.3.5.2;5.2 3D Visualization;320
8.3.6;6 CONCLUSION;321
8.3.7;REFERENCES;321
8.4;Resolving some Ambiguities in Real-time Design Drawing Recognition by means of a Decision Tree for Agents;323
8.4.1;1 GRAPHIC REPRESENTATIONS;323
8.4.1.1;1.1 Basic Assumptions;324
8.4.1.2;1.2 Graphic Units;325
8.4.2;2 GRAPHIC UNIT RECOGNITION;326
8.4.2.1;2.1 Multi-agent Approach;326
8.4.2.2;2.2 Online Recognition;327
8.4.2.3;2.3 Resolving the Decision Process;328
8.4.3;3 FUTURE WORK;329
8.4.4;REFERENCES;330
8.5;Sketching with Digital Pen and Paper;333
8.5.1;1 SKETCHING AND THE COMPUTER;333
8.5.2;2 DIGITAL PEN AND PAPER;335
8.5.3;3 MECHANICAL ASPECTS;336
8.5.4;4 SYNTAGMATIC ASPECTS;338
8.5.5;5 UTILITY AND APPLICABILITY;341
8.5.6;REFERENCES;342
8.6;Mindstage: Towards a Functional Virtual Architecture;343
8.6.1;1 INTRODUCTION;343
8.6.2;2 DESIGN;344
8.6.2.1;2.1 Spatialisation of Knowledge;344
8.6.2.2;2.2 Look and Feel;345
8.6.2.3;2.3 Demonstrations;346
8.6.2.4;2.4 Avatars;347
8.6.3;3 IMPLEMENTATION;347
8.6.3.1;3.1 Static Objects;348
8.6.3.2;3.2 Dynamic Objects;348
8.6.4;4 EVALUATION;349
8.6.5;5 CONCLUSION AND FURTHER WORK;350
8.6.6;6 ACKNOWLEDGEMENTS;351
8.6.7;REFERENCES;351
8.7;Advanced Ubiquitous Media for Interactive Space;353
8.7.1;1 INTRODUCTION;353
8.7.2;2 UBIQUITOUS MEDIA;354
8.7.3;3 A FRAMEWORK;355
8.7.3.1;3.1 Physical-Digital Interaction Interfaces;355
8.7.3.2;3.2 Sensing and Perceptual Technologies;356
8.7.3.3;3.3 Application and Service Control;357
8.7.3.4;3.4 Human and Environmental Adaptations;359
8.7.4;4 PUT IT ALL TOGETHER: THE IP PROJECT;360
8.7.5;5 THE APPLICATION: INTERACTIVE MEDIA EXHIBITION;360
8.7.6;6 CONCLUSION;361
8.7.7;ACKNOWLEDGEMENT;362
8.7.8;REFERENCES;362
8.8;Hands Free;363
8.8.1;1 BUILDING SURVEYING – THE CURRENT SITUATION;363
8.8.2;2 HANDS FREE – MODULARWEARABLE COMPUTER SYSTEMS FOR BUILDING SURVEYING;364
8.8.2.1;2.1 The Wearable Computer Platform;365
8.8.2.2;2.2 A Software Concept Based upon a Portable Computer and Augmented Reality;368
8.8.3;3 CONCLUSION;371
8.8.4;ACKNOWLEDGEMENTS;372
8.8.5;REFERENCES;372
8.9;Responsive Sensate Environments: Past and Future Directions;373
8.9.1;1 INTRODUCTION;373
8.9.2;2 RESPONSIVE ENVIRONMENTS;373
8.9.2.1;2.1 Active and Passive Sensing;374
8.9.2.2;2.2 Responsive Environment Design Using Sensors;374
8.9.2.3;2.3 Societal Contexts for Responsive Environments;375
8.9.3;3 TOWARDS AESTHETIC AND ENGAGING AMBIENT DISPLAY;377
8.9.3.1;3.1 Ambient Display and Ambient Devices;379
8.9.4;4 USINGGESTURAL CONTROLLERS AND SPATIAL INTERACTION TO ENGAGEWITH INFORMATION;380
8.9.5;5 CONCLUSION;380
8.9.6;REFERENCES;381
9;Form and Fabric: Computer Integrated Construction and Manufacturing;383
9.1;The Redefinition of Ornament;385
9.1.1;1 INTRODUCTION;385
9.1.2;2 DIGITAL GENERATION OF SURFACES;386
9.1.2.1;2.1 Modeled Surfaces;386
9.1.2.2;2.2 Programmed Surfaces;387
9.1.2.3;2.3 Image Derived Surfaces;388
9.1.3;3 THE CNC PRODUCTION PROCESS;389
9.1.3.1;3.1 Generation of the NC Machine Code;390
9.1.3.2;3.2 Computer Controlled Manufacturing;390
9.1.3.3;3.3 Materials;391
9.1.4;4 EXAMPLES IN PRACTICE AND RESEARCH;391
9.1.4.1;4.1 EternitOrnament;391
9.1.4.2;4.2 The Rustizierer;392
9.1.4.3;4.3 Historical Building Facade;393
9.1.5;5 CONCLUSIONS;393
9.1.6;REFERENCES;394
9.2;Wood Frame Grammar:;395
9.2.1;1 INTRODUCTION;395
9.2.2;2 GRAMMAR FUNCTIONS AND CAD SCRIPTING;396
9.2.3;3 BACKGROUND;397
9.2.4;4 WOOD FRAME SHAPE GRAMMAR;398
9.2.5;5 GENERATING A ROOM;401
9.2.6;6 CONCLUSION;403
9.2.7;REFERENCES;404
9.3;Transformations on Parametric Design Models;405
9.3.1;1 INTRODUCTION;405
9.3.2;2 PARAMETRIC MODELS;406
9.3.2.1;2.1 Instances of a Parametric Model;406
9.3.2.2;2.2 Scope;406
9.3.3;3 PARAMETRIC MODELS FOR THE COLUMNS OF THE SAGRADA FAMILIA;407
9.3.3.1;3.1 Generation Procedure;407
9.3.3.2;3.2 Reconstruction of the Column Model;408
9.3.3.3;3.3 Parameterization of the Column Model;409
9.3.3.4;3.4 Transformations of the Parametric Model;410
9.3.4;4 DISCUSSION;411
9.3.4.1;4.1 Counting New Designs;411
9.3.5;REFERENCES;412
10;Building Information Modelling and Construction Management;413
10.1;Spatial Reasoning for Building Model Reconstruction Based on Sensed Object Location Information;415
10.1.1;1 INTRODUCTION;415
10.1.2;2 TAG-BASED BUILDING REPRESENTATIONS;416
10.1.3;3 CONVERSION FROM TAG-BASED TO BOUNDARYBASED BUILDING REPRESENTATIONS;417
10.1.3.1;3.1 Space-boundaries;418
10.1.3.2;3.2 Merge of Space-components;419
10.1.3.3;3.3 Openings;420
10.1.3.4;3.4 Infrastructure Objects;421
10.1.4;4 EXAMPLE;422
10.1.5;5 DISCUSSION;422
10.1.6;ACKNOWLEDGMENTS;422
10.1.7;REFERENCES;424
10.2;Construction Analysis during the Design Process;425
10.2.1;1 INTRODUCTION;425
10.2.2;2 CONSTRUCTION ALGORITHMS;426
10.2.2.1;2.1 3D Representations;427
10.2.2.2;2.2 Object Topology Analysis;427
10.2.3;3 IMPLEMENTATION;429
10.2.4;4 PILOT STUDY;430
10.2.4.1;4.1 3D CAD Model Preparation;431
10.2.4.2;4.2 Planning Generation;431
10.2.4.3;4.3 Planning Comparison;432
10.2.5;5 DISCUSSION;433
10.2.6;REFERENCES;434
10.3;A Software Architecture for Self-updating Life-cycle Building Models;435
10.3.1;1 INTRODUCTION;435
10.3.2;2 PROJECT DESCRIPTION;436
10.3.2.1;2.1 Requirements;436
10.3.2.2;2.2 Architecture;437
10.3.2.3;2.3 Initial Implementation;442
10.3.3;3 CONCLUSION;443
10.3.4;ACKNOWLEDGEMENTS;443
10.3.5;REFERENCES;443
10.4;Multidisciplinary Design in Virtual Worlds;445
10.4.1;1 INTRODUCTION;445
10.4.2;2 COLLABORATIVE VIRTUAL ENVIRONMENTS AND COLLABORATIVE DESIGNING;446
10.4.2.1;2.1 Example Problem;446
10.4.3;3 MULTIDISCIPLINARY MODELLING;448
10.4.4;4 THE SYSTEM ARCHITECTURE AND PROTOTYPE IMPLEMENTATION;449
10.4.4.1;4.1 The Database and Internal Model;449
10.4.4.2;4.2 The Agent Society;450
10.4.4.3;4.3 The Virtual Collaborative Environment;451
10.4.5;5 CONCLUSION;453
10.4.6;ACKNOWLEDGEMENTS;453
10.4.7;REFERENCES;454
11;Linking Education, Research and Practice;455
11.1;A Multi-Disciplinary Design Studio using a Shared IFC Building Model;457
11.1.1;1 INTRODUCTION;457
11.1.2;2 RESEARCH CONTEXT;458
11.1.3;3 PROJECT OUTLINE;460
11.1.4;4 OPERATIONAL ISSUES;461
11.1.4.1;4.1 Building Model Issues;462
11.1.4.2;4.2 IFC Technology Issues;463
11.1.5;5 CONCLUSION AND FUTURE WORK;464
11.1.6;ACKNOWLEDGEMENTS;465
11.1.7;REFERENCES;465
11.2;Case Studies of Web-Based Collaborative Design;467
11.2.1;1 INTRODUCTION;467
11.2.2;2 DATA COLLECTION;468
11.2.2.1;2.1 Software Description;468
11.2.2.2;2.2 Case Description;468
11.2.3;3 CONTENT ANALYSIS CODING SCHEMAS;469
11.2.4;4 ANALYSIS RESULTS: CHANGES IN COMMUNICATION PATTERNS;470
11.2.4.1;4.1 Activity by Location;470
11.2.4.2;4.2 Coordination versus Collaboration;471
11.2.4.3;4.3 Information Behaviour;472
11.2.4.4;4.4 Messages According to Organizational Hierarchy;473
11.2.5;5 IMPLICATIONS AND CONCLUSIONS;474
11.2.6;REFERENCES;476
11.3;Interdisciplinary Knowledge Modelling for Free-Form Design – An Educational Experiment;477
11.3.1;1 INTRODUCTION;477
11.3.2;2 DESIGN KNOWLEDGE MODELLING AND REPRESENTATION;479
11.3.2.1;2.1 BLIP;480
11.3.3;3 EXPERIMENTAL WORKSHOPS;481
11.3.3.1;3.1 First Workshop;481
11.3.3.2;3.2 Second Workshop;482
11.3.4;4 DISCUSSION;483
11.3.5;5 CONCLUSION;485
11.3.6;ACKNOWLEDGEMENTS;485
11.3.7;REFERENCES;486
12;Reviewers;487
13;Author Index;489
14;Keyword Index;491
Constructing Complexity (p. 41)
MITCHELL William J.
School of Architecture and Planning, MIT, USA
Keywords: assembly, complexity, construction, fabrication, uniformity, variety
Abstract:
Buildings were once materialized drawings, but now, increasingly, they are materialized digital information – designed and documented on computer-aided design systems, fabricated with digitally controlled machinery, and assembled on site with the assistance of digital positioning and placement equipment. Within the framework of digitally mediated design and construction we can precisely quantify the design content and the t construction content of a project, and go on to define t complexity as the ratio of added design content to added construction content.
This paper develops the definitions of design content, construction content, and complexity, and explores the formal, functional, and economic consequences of varying the levels of complexity of projects. It argues that the emerging architecture of the digital era is characterized by high levels of complexity, and that this enables more sensitive and inflected response to the exigencies of site, program, and expressive intention than was generally possible within the framework of industrial modernism.
Perhaps you have wondered why the shapes of buildings seem to be getting more complex. Conceivably, it could be nothing more profound than an arbitrary flicker of architectural fashion. But it is worth asking whether the difference between, say, Frank Gehry’s Bilbao Guggenheim and the characteristically rectangular slabs and towers of the late twentieth century is due to something more fundamental?
Does the curved shape of London’s Swiss Re Building, the twisted profile of New York’s proposed Freedom Tower, or the non-repetitive roof structure of the British Museum courtyard represent some significant change in the conditions of production of architecture?
The shift, I suggest, is a direct outcome of new conditions created by the digital revolution. Buildings were once materialized drawings, but now, increasingly, they are materialized digital information – designed with the help of computer-aided design systems, fabricated by means of digitally controlled machinery, put together on site with the assistance of digital layout and positioning devices, and generally inseparable from flows of information through global computer networks.
Many architects have simply exploited digital technology to reduce the time and cost of producing buildings in the conventionally modernist mode, much as architects of the early industrial revolution took advantage of mass-production to inexpensively proliferate the ornament that had previously been created by craftsmen. But others have recognized that the digital revolution has opened up new domains of architectural form for exploration, and they have seized the opportunity to produce projects that break the old rules.
To see precisely how new formal possibilities emerge from the interplay of information and materiality, we need to do some numbers. It will be helpful to begin with a homely example that should be familiar to anyone who has ever operated a computer graphics or computer-aided design system. Consider the task of inputting a circle.
You need to give a circle command and specify three numbers – usually an xcoordinate, a y-coordinate, and a radius, though Euclid tells us that there are other, equivalent ways to convey the same information.




