E-Book, Englisch, 736 Seiten
Masís Interpretable Machine Learning with Python
1. Auflage 2021
ISBN: 978-1-80020-657-1
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
Learn to build interpretable high-performance models with hands-on real-world examples
E-Book, Englisch, 736 Seiten
ISBN: 978-1-80020-657-1
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
No detailed description available for "Interpretable Machine Learning with Python".
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Neuronale Netzwerke
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computersimulation & Modelle, 3-D Graphik
Weitere Infos & Material
Table of Contents - Interpretation, Interpretability and Explainability; and why does it all matter?
- Key Concepts of Interpretability
- Interpretation Challenges
- Fundamentals of Feature Importance and Impact
- Global Model-Agnostic Interpretation Methods
- Local Model-Agnostic Interpretation Methods
- Anchor and Counterfactual Explanations
- Visualizing Convolutional Neural Networks
- Interpretation Methods for Multivariate Forecasting and Sensitivity Analysis
- Feature Selection and Engineering for Interpretability
- Bias Mitigation and Causal Inference Methods
- Monotonic Constraints and Model Tuning for Interpretability
- Adversarial Robustness
- What's Next for Machine Learning Interpretability?