E-Book, Englisch, Band 234, 128 Seiten, eBook
Reihe: The Springer International Series in Engineering and Computer Science
Menezes Elliptic Curve Public Key Cryptosystems
Erscheinungsjahr 2012
ISBN: 978-1-4615-3198-2
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 234, 128 Seiten, eBook
Reihe: The Springer International Series in Engineering and Computer Science
ISBN: 978-1-4615-3198-2
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1 Introduction to Public Key Cryptography.- 1.1 Private Key Cryptography.- 1.2 Diffie-Hellman Key Exchange.- 1.3 Public Key Cryptography.- 1.4 Trapdoor One-Way Functions Based on Groups.- 1.5 NIST Digital Signature Standard.- 1.6 Elliptic Curve Cryptosystems.- 1.7 Notes.- 2 Introduction to Elliptic Curves.- 2.1 Definitions.- 2.2 Group Law.- 2.3 The Discriminant and j-Invariant.- 2.4 Curves over K, char(K) # 2,3.- 2.5 Curves over K, char(K) = 2.- 2.6 Group Structure.- 2.7 Divisor Theory.- 2.8 Elliptic Curves over ?n.- 2.9 Notes.- 3 Isomorphism Classes of Elliptic Curves over Finite Fields.- 3.1 Introduction.- 3.2 Isomorphism Classes of Curves over Fq, char(Fq) 2, 3..- 3.3 Isomorphism Classes of Non-Supersingular Curves over F2m.- 3.4 Isomorphism Classes of Supersingular Curves over F2m, m odd.- 3.5 Isomorphism Classes of Supersingular Curves over F2m, m even.- 3.6 Number of Points.- 3.7 Notes.- 4 The Discrete Logarithm Problem.- 4.1 Algorithms.- 4.2 Reducing Some Logarithm Problems to Logarithms in a Finite Field.- 4.3 Notes.- 5 The Elliptic Curve Logarithm Problem.- 5.1 The Weil Pairing.- 5.2 Reducing Elliptic Curve Logarithms to Logarithms in a Finite Field.- 5.3 Cryptographic Implications.- 5.4 Finding the Group Structure.- 5.5 Notes.- 6 Implementation of Elliptic Curve Cryptosystems.- 6.1 Field Arithmetic in F2m.- 6.2 Selecting a Curve and Field K.- 6.3 Projective Coordinates.- 6.4 ElGamal Cryptosystem.- 6.5 Performance.- 6.6 Using Supersingular Curves.- 6.7 Elliptic Curve Cryptosystems over ?n.- 6.8 Implementations.- 6.9 Notes.- 7 Counting Points on Elliptic Curves Over F2m.- 7.1 Some Basics.- 7.2 Outline of Schoof’s Algorithm.- 7.3 Some Heuristics.- 7.4 Implementation and Results.- 7.5 Recent Work.- 7.6 Notes.