Meng / Wunsch II / Tan | Adaptive Resonance Theory in Social Media Data Clustering | Buch | 978-3-030-02984-5 | sack.de

Buch, Englisch, 190 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 483 g

Reihe: Advanced Information and Knowledge Processing

Meng / Wunsch II / Tan

Adaptive Resonance Theory in Social Media Data Clustering

Roles, Methodologies, and Applications
1. Auflage 2019
ISBN: 978-3-030-02984-5
Verlag: Springer International Publishing

Roles, Methodologies, and Applications

Buch, Englisch, 190 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 483 g

Reihe: Advanced Information and Knowledge Processing

ISBN: 978-3-030-02984-5
Verlag: Springer International Publishing


Social media data contains our communication and online sharing, mirroring our daily life. This book looks at how we can use and what we can discover from such big data:

  • Basic knowledge (data & challenges) on social media analytics
  • Clustering as a fundamental technique for unsupervised knowledge discovery and data mining
  • A class of neural inspired algorithms, based on adaptive resonance theory (ART), tackling challenges in big social media data clustering 
  • Step-by-step practices of developing unsupervised machine learning algorithms for real-world applications in social media domain

Adaptive Resonance Theory in Social Media Data Clustering stands on the fundamental breakthrough in cognitive and neural theory, i.e. adaptive resonance theory, which simulates how a brain processes information to perform memory, learning, recognition, and prediction.

It presents initiatives on the mathematical demonstration of ART’s learning mechanisms in clustering, and illustrates how to extend the base ART model to handle the complexity and characteristics of social media data and perform associative analytical tasks.

Both cutting-edge research and real-world practices on machine learning and social media analytics are included in the book and if you wish to learn the answers to the following questions, this book is for you:

  • How to process big streams of multimedia data?
  • How to analyze social networks with heterogeneous data?
  • How to understand a user’s interests by learning from online posts and behaviors?
  • How to create a personalized search engine by automatically indexing and searching multimodal information resources?          
.
Meng / Wunsch II / Tan Adaptive Resonance Theory in Social Media Data Clustering jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Part 1: Theories.- Introduction.- Clustering and Extensions in the Social Media Domain.- Adaptive Resonance Theory (ART) for Social Media Analytics.- Part II: Applications.- Personalized Web Image Organization.- Socially-Enriched Multimedia Data Co-Clustering.- Community Discovery in Heterogeneous Social Networks.- Online Multimodal Co-Indexing and Retrieval of Social Media Data.- Concluding Remarks.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.