E-Book, Englisch, 634 Seiten
Menictas / Skyllas-Kazacos / Lim Advances in Batteries for Medium and Large-Scale Energy Storage
1. Auflage 2014
ISBN: 978-1-78242-022-4
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Types and Applications
E-Book, Englisch, 634 Seiten
Reihe: Woodhead Publishing Series in Energy
ISBN: 978-1-78242-022-4
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
As energy produced from renewable sources is increasingly integrated into the electricity grid, interest in energy storage technologies for grid stabilisation is growing. This book reviews advances in battery technologies and applications for medium and large-scale energy storage. Chapters address advances in nickel, sodium and lithium-based batteries. Other chapters review other emerging battery technologies such as metal-air batteries and flow batteries. The final section of the book discuses design considerations and applications of batteries in remote locations and for grid-scale storage. - Reviews advances in battery technologies and applications for medium and large-scale energy storage - Examines battery types, including zing-based, lithium-air and vanadium redox flow batteries - Analyses design issues and applications of these technologies
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Advances in Batteries for Medium- and Large-scale Energy Storage;4
3;Copyright;5
4;Contents;6
5;List of contributors;12
6;Woodhead Publishing Series in Energy;16
7;Part One: Introduction;20
7.1;Chapter 1: Electrochemical cells for medium- and large-scale energy storage: fundamentals;22
7.1.1;1.1. Introduction;22
7.1.2;1.2. Potential and capacity of an electrochemical cell;23
7.1.2.1;1.2.1. Theoretical potential;23
7.1.2.2;1.2.2. Actual cell potential;27
7.1.2.2.1;1.2.2.1. Ohmic overpotential;28
7.1.2.2.2;1.2.2.2. Activation overpotential;28
7.1.2.2.3;1.2.2.3. Concentration overpotential;30
7.1.2.3;1.2.3. Capacity;32
7.1.2.3.1;1.2.3.1. Theoretical capacity and actual capacity;32
7.1.2.3.2;1.2.3.2. Capacity decay in secondary battery systems;33
7.1.2.4;1.2.4. Other important parameters of electrochemical cells;33
7.1.3;1.3. Electrochemical fundamentals in practical electrochemical cells;35
7.1.3.1;1.3.1. Electrochemical fundamentals of the lithium-ion battery;35
7.1.3.2;1.3.2. Electrochemical fundamentals of the redox flow battery;38
7.1.3.3;1.3.3. Electrochemical fundamentals of the sodium battery;42
7.1.3.4;References;45
7.2;Chapter 2: Economics of batteries for medium- and large-scale energy storage;48
7.2.1;2.1. Introduction;48
7.2.1.1;Case study1-small scale;53
7.2.1.2;Case study2-large scale;53
7.2.2;2.2. Small-scale project;53
7.2.2.1;2.2.1. Simulation inputs;53
7.2.2.1.1;2.2.1.1. Primary load data;53
7.2.2.1.2;2.2.1.2. Solar resource and photovoltaic module;54
7.2.2.1.3;2.2.1.3. Wind resource and turbine;55
7.2.2.1.4;2.2.1.4. Energy storage systems;56
7.2.2.1.4.1;2.2.1.4.1. Lead-acid battery: Surrette S4KS25P;56
7.2.2.1.4.2;2.2.1.4.2. Vanadium redox flow battery;57
7.2.2.1.5;2.2.1.5. Diesel generator;57
7.2.2.1.6;2.2.1.6. Additional considerations;58
7.2.2.2;2.2.2. Simulation results and discussion;58
7.2.2.2.1;2.2.2.1. Energy storage system vs. diesel generator;58
7.2.2.2.2;2.2.2.2. Flow-type battery (VRB) versus lead-acid battery;61
7.2.3;2.3. Large-scale project;63
7.2.3.1;2.3.1. Simulation inputs;63
7.2.3.1.1;2.3.1.1. Primary load data;63
7.2.3.1.2;2.3.1.2. Solar resource and photovoltaic module;63
7.2.3.1.3;2.3.1.3. Wind resource and turbine;65
7.2.3.1.4;2.3.1.4. Energy storage system and additional considerations;65
7.2.3.2;2.3.2. Simulation results and discussion;65
7.2.3.2.1;2.3.2.1. Energy storage system (VRB) vs. diesel generator;66
7.2.3.2.2;2.3.2.2. Vanadium redox flow battery vs. lead-acid battery;67
7.2.4;2.4. Conclusions;71
7.2.5;References;71
8;Part Two: Lead, nickel, sodium, and lithium-based batteries;74
8.1;Chapter 3: Lead-acid batteries for medium- and large-scale energy storage;76
8.1.1;3.1. Introduction;76
8.1.2;3.2. Electrochemistry of the lead-acid battery;77
8.1.3;3.3. Pb-acid battery designs;78
8.1.4;3.4. Aging effects and failure mechanisms;80
8.1.5;3.5. Advanced lead-acid batteries;81
8.1.6;3.6. Applications of lead-acid batteries in medium- and long-term energy storage;86
8.1.7;3.7. Summary and future trends;88
8.1.8;References;88
8.2;Chapter 4: Nickel-based batteries for medium- and large-scale energy storage;92
8.2.1;4.1. Introduction;92
8.2.2;4.2. Basic battery chemistry;94
8.2.2.1;4.2.1. Ni-Cd battery;94
8.2.2.2;4.2.2. Ni-MH battery;95
8.2.3;4.3. Battery development and applications;96
8.2.3.1;4.3.1. Ni-Cd;97
8.2.3.1.1;4.3.1.1. Positive and negative electrodes;97
8.2.3.1.2;4.3.1.2. Classification;98
8.2.3.1.3;4.3.1.3. Application;98
8.2.3.2;4.3.2. Ni-MH battery;100
8.2.3.2.1;4.3.2.1. Negative electrode;100
8.2.3.2.2;4.3.2.2. Electrolyte and separator;102
8.2.3.2.3;4.3.2.3. Construction;102
8.2.3.2.4;4.3.2.4. Ni-Cd versus Ni-MH batteries;103
8.2.3.2.5;4.3.2.5. Low self-discharge Ni-MH batteries;104
8.2.3.2.6;4.3.2.6. Applications;105
8.2.4;4.4. Future trends;105
8.2.4.1;4.4.1. Ni-Cd batteries;106
8.2.4.2;4.4.2. Ni-MH batteries;106
8.2.4.3;4.4.3. Recycling;107
8.2.5;4.5. Sources of further information and advice;108
8.2.6;References;108
8.3;Chapter 5: Molten salt batteries for medium- and large-scale energy storage;110
8.3.1;5.1. Introduction;110
8.3.2;5.2. Sodium-ß-alumina batteries (NBBs);110
8.3.2.1;5.2.1. Battery electrochemistries;111
8.3.2.2;5.2.2. ß-Alumina solid electrolyte (BASE);114
8.3.2.3;5.2.3. Negative electrode or sodium anode;126
8.3.2.4;5.2.4. Positive electrode or cathode;127
8.3.2.5;5.2.5. Battery efficiencies and cycle life;135
8.3.3;5.3. Challenges and future trends;136
8.3.4;References;139
8.4;Chapter 6: Lithium-ion batteries (LIBs) for medium- and large-scale energy storage: current cell materials and components;144
8.4.1;6.1. Introduction;144
8.4.2;6.2. Chemistry of lithium-ion batteries: anodes;146
8.4.2.1;6.2.1. Carbonaceous materials;146
8.4.2.2;6.2.2. Lithium titanate (Li4Ti5O12);151
8.4.2.3;6.2.3. Tin-based anode materials;152
8.4.3;6.3. Chemistry of LIBs: cathodes;154
8.4.3.1;6.3.1. Olivine lithium metal phosphates;154
8.4.3.2;6.3.2. Layered lithium metal oxides;158
8.4.3.3;6.3.3. Spinel lithium metal oxides: LiMn2O4;160
8.4.3.4;6.3.4. Summary;161
8.4.4;6.4. Chemistry of LIBs: electrolytes;162
8.4.4.1;6.4.1. Passivation of the negative electrode (SEI);162
8.4.4.2;6.4.2. Inorganic lithium salts;163
8.4.4.3;6.4.3. Stability and safety issues;163
8.4.4.4;6.4.4. Gel polymer electrolytes;164
8.4.4.5;6.4.5. SPE-lithium metal polymer batteries;164
8.4.4.6;6.4.6. Organic salts developments;165
8.4.4.6.1;6.4.6.1. Modification of the polymer matrix;167
8.4.4.6.2;6.4.6.2. Transference number;168
8.4.5;6.5. Chemistry of LIBs: inert components;169
8.4.5.1;6.5.1. Separator;169
8.4.5.2;6.5.2. Binder;170
8.4.5.3;6.5.3. Conductive additives;171
8.4.5.4;6.5.4. Current collector;171
8.4.6;6.6. Lithium-aluminum/iron-sulfide (LiAl-FeS(2)) batteries;172
8.4.7;6.7. Sources of further information and advice;172
8.4.8;References and further reading;174
8.5;Chapter 7: Lithium-ion batteries (LIBs) for medium- and large-scale energy storage: emerging cell materials and components;232
8.5.1;7.1. Introduction;232
8.5.2;7.2. Anodes;232
8.5.2.1;7.2.1. Nanostructured and N-doped carbonaceous materials;232
8.5.2.2;7.2.2. Titanium dioxide (TiO2);233
8.5.2.3;7.2.3. Silicon and silicon oxide (SiOx, x<2);234
8.5.2.4;7.2.4. Conversion materials;235
8.5.2.5;7.2.5. Combined conversion-alloying materials;235
8.5.3;7.3. Cathodes;236
8.5.3.1;7.3.1. High voltage cathodes;236
8.5.3.1.1;7.3.1.1. Transition metal substituted LiMn2O4;236
8.5.3.1.2;7.3.1.2. LiCoPO4;237
8.5.3.2;7.3.2. ``Lithium-rich´´ cathode layered composites xLi2MnO3(1-x)LiMO2 (M=Co, Ni, Mn);238
8.5.3.3;7.3.3. Li2TMSiO4 (TM=Fe, Mn, Co);239
8.5.3.4;7.3.4. Fluorine-containing polyanion-type cathode materials (tavorite, fluorosulfates);239
8.5.3.5;7.3.5. Lithium vanadium phosphate (Li3V2(PO4)3);240
8.5.3.6;7.3.6. Sulfur;242
8.5.3.7;7.3.7. Vanadium oxide (V2O5);244
8.5.4;7.4. Electrolytes;245
8.5.4.1;7.4.1. Ionic liquids-based electrolytes;246
8.5.5;7.5. Inert components;248
8.5.5.1;7.5.1. Binder;248
8.5.5.2;7.5.2. Separator;248
8.5.5.3;7.5.3. Conductive additives;250
8.5.6;7.6. Sources of further information and advice;250
8.5.7;References and further reading;252
9;Part Three: Other types of batteries;310
9.1;Chapter 8: Zinc-based flow batteries for medium- and large-scale energy storage;312
9.1.1;8.1. Introduction;312
9.1.2;8.2. Zinc-bromine flow batteries;313
9.1.2.1;8.2.1. The negative electrode;314
9.1.2.2;8.2.2. The positive electrode;315
9.1.2.3;8.2.3. Cell performance;315
9.1.2.4;8.2.4. Conclusion and prospects;316
9.1.3;8.3. Zinc-cerium flow batteries;316
9.1.3.1;8.3.1. The negative electrode;317
9.1.3.2;8.3.2. The positive electrode;320
9.1.3.3;8.3.3. Cell performance;321
9.1.3.4;8.3.4. Conclusions and prospects;322
9.1.4;8.4. Zinc-air flow batteries;323
9.1.4.1;8.4.1. The negative electrode;323
9.1.4.2;8.4.2. The positive electrode;325
9.1.4.3;8.4.3. Cell developments;326
9.1.4.4;8.4.4. Conclusion and prospects;328
9.1.5;8.5. Other zinc-based flow batteries;328
9.1.6;References;330
9.2;Chapter 9: Polysulfide-bromine flow batteries (PBBs) for medium- and large-scale energy storage;336
9.2.1;9.1. Introduction;336
9.2.2;9.2. PBBs: principles and technologies;337
9.2.3;9.3. Electrolyte solution and its chemistry;338
9.2.3.1;9.3.1. The solution chemistry and electrochemistry of bromide ions;339
9.2.3.2;9.3.2. Solution chemistry and electrochemistry of polysulfides;339
9.2.4;9.4. Electrode materials;340
9.2.4.1;9.4.1. Bromine cathode materials;341
9.2.4.2;9.4.2. Sulfur anode materials;341
9.2.5;9.5. Ion-conductive membrane separators for PBBs;342
9.2.6;9.6. PBB applications and performance;343
9.2.7;9.7. Summary and future trends;344
9.2.8;References;345
9.3;Chapter 10: Vanadium redox flow batteries (VRBs) for medium- and large-scale energy storage;348
9.3.1;10.1. Introduction;348
9.3.2;10.2. Cell reactions, general features, and operating principles;349
9.3.2.1;10.2.1. Electrode reactions and cell potential;349
9.3.2.2;10.2.2. General features;351
9.3.2.3;10.2.3. Battery design and operation;352
9.3.3;10.3. Cell materials;354
9.3.3.1;10.3.1. Electrode materials;354
9.3.3.1.1;10.3.1.1. Electrode substrate materials and bipolar electrode development;355
9.3.3.2;10.3.2. Membrane materials;356
9.3.3.3;10.3.3. Capacity loss and side reactions;358
9.3.4;10.4. Electrolyte preparation and optimization;359
9.3.4.1;10.4.1. Electrolyte preparation;359
9.3.4.2;10.4.2. Electrolyte optimization;360
9.3.5;10.5. Cell and battery performance;363
9.3.6;10.6. State-of-charge (SOC) monitoring and flow rate control;368
9.3.7;10.7. Field trials, demonstrations, and commercialization;370
9.3.8;10.8. Other VRB chemistries;378
9.3.8.1;10.8.1. Generation 2 (G2V/Br RFB) vanadium/polyhalide redox flow battery;378
9.3.8.2;10.8.2. Generation 3 HCl and mixed H2SO4/HCl electrolyte-based redox flow batteries (G3 VRBs);379
9.3.8.3;10.8.3. Fe/V and Fe-V/2V RFBs;382
9.3.8.4;10.8.4. Issues particularly relevant to the deployment of G2, G3, Fe/V, and Fe-V/2V RFBs;385
9.3.8.5;10.8.5. Comparison between G1, G2, G3, Fe/V, and Fe-V/2V VRBs;386
9.3.8.6;10.8.6. Vanadium oxygen redox fuel cell;386
9.3.8.7;10.8.7. Vanadium hydrogen redox fuel cell;389
9.3.9;10.9. Modeling and simulations;390
9.3.10;10.10. Cost considerations;393
9.3.10.1;10.10.1. Electrolyte cost;393
9.3.10.2;10.10.2. Stack costs;394
9.3.11;10.11. Conclusions;396
9.3.12;References;397
9.4;Chapter 11: Lithium-air batteries for medium- and large-scale energy storage;406
9.4.1;11.1. Introduction;406
9.4.2;11.2. Lithium ion batteries;406
9.4.3;11.3. Lithium oxygen battery;408
9.4.3.1;11.3.1. Introduction for lithium oxygen battery;408
9.4.3.2;11.3.2. Categories of lithium oxygen battery;408
9.4.3.3;11.3.3. Towards a liquid anode/solid-state electrolyte membrane/liquid cathode cell;411
9.4.4;11.4. Li-SES anode;414
9.4.4.1;11.4.1. Introduction to Li-SESs;414
9.4.4.2;11.4.2. Half-cell configuration and OCV measurements with Li-SES electrodes;415
9.4.4.3;11.4.3. Conductivity measurement of Li-SES;416
9.4.4.4;11.4.4. Liquid anode-liquid cathode full cell;418
9.4.4.4.1;11.4.4.1. Oxygen cathode;418
9.4.4.4.2;11.4.4.2. Iodine cathode;418
9.4.5;11.5. LiPON thin film and its application to the Li battery;421
9.4.5.1;11.5.1. LiPON thin film synthesis;421
9.4.5.2;11.5.2. LiPON thin film as electrolyte;425
9.4.5.3;11.5.3. LiPON thin film as a protecting layer;427
9.4.6;11.6. Carbon materials as cathode in Li-O2 battery;431
9.4.6.1;11.6.1. Surface area and porosity;432
9.4.6.2;11.6.2. Carbon microstructure;432
9.4.7;11.7. Fluorinated ether as an additive for the lithium oxygen battery;438
9.4.7.1;11.7.1. PFC additive in the Li-O2 battery;439
9.4.7.2;11.7.2. Investigating effect of PFC additive at different electrode thicknesses;442
9.4.7.3;11.7.3. Investigation of ORR with a well-defined GC electrode;444
9.4.7.3.1;11.7.3.1. Measurement of the oxygen diffusion coefficient and oxygen solubility in the electrolytes;445
9.4.7.3.2;11.7.3.2. Electrolyte stability: the stability of the PFC additive during ORR;447
9.4.8;11.8. Summary;449
9.4.9;Notes;449
9.4.10;References;450
9.5;Chapter 12: Zinc-air and other types of metal-air batteries;460
9.5.1;12.1. Introduction;460
9.5.2;12.2. Challenges in zinc-air cell chemistry;463
9.5.3;12.3. Advances in zinc-air batteries;468
9.5.3.1;12.3.1. Oxygen reduction electrodes;468
9.5.3.2;12.3.2. Zinc electrodes;471
9.5.3.3;12.3.3. Carbon dioxide scrubbing;473
9.5.4;12.4. Future trends in zinc-air batteries;475
9.5.5;12.5. Other metal-air batteries;475
9.5.6;References;478
9.6;Chapter 13: Aluminum-ion batteries for medium- and large-scale energy storage;482
9.6.1;13.1. Introduction;482
9.6.2;13.2. Al-ion battery chemistry;484
9.6.3;13.3. Conclusions;491
9.6.4;Acknowledgments;491
9.6.5;References;492
10;Part Four: Design issues and applications;494
10.1;Chapter 14: Advances in membrane and stack design of redox flow batteries (RFBs) for medium- and large-scale energy storage;496
10.1.1;14.1. Introduction;496
10.1.2;14.2. Membranes used in redox flow batteries;499
10.1.2.1;14.2.1. Introduction to ion-exchange membranes;499
10.1.2.2;14.2.2. Types of ion-exchange membranes;501
10.1.2.3;14.2.3. Preparation of ion-exchange membranes;503
10.1.2.4;14.2.4. Properties of ion-exchange membranes;505
10.1.2.4.1;14.2.4.1. Ion-exchange capacity;506
10.1.2.4.2;14.2.4.2. Proton conductivity;507
10.1.2.4.3;14.2.4.3. Swelling ratio;508
10.1.2.4.4;14.2.4.4. Ion diffusivity;508
10.1.3;14.3. Membrane evaluation in vanadium redox flow batteries;509
10.1.4;14.4. Research and development on membranes for redox flow battery applications;509
10.1.4.1;14.4.1. Cation exchange membranes (CEM);511
10.1.4.1.1;14.4.1.1. Review of nafion and its modifications;511
10.1.4.1.2;14.4.1.2. Review of SPEEK and its modifications;514
10.1.4.1.3;14.4.1.3. Other CEM;515
10.1.4.2;14.4.2. Anion-exchange membranes (AEM);516
10.1.4.3;14.4.3. Amphoteric membranes;517
10.1.4.4;14.4.4. Nonionic microporous separators and membranes;518
10.1.5;14.5. Chemical stability of membranes;519
10.1.6;14.6. Conclusion;521
10.1.7;References;522
10.2;Chapter 15: Modeling the design of batteries for medium- and large-scale energy storage;528
10.2.1;15.1. Introduction;528
10.2.2;15.2. The main components of lithium-ion batteries (LIBs);530
10.2.3;15.3. The use of density functional theory (DFT) to analyze LIB materials;533
10.2.4;15.4. Structure-property relationships of electrode materials;535
10.2.5;15.5. Structure-property relationships of polyanionic compounds used in LIBs;539
10.2.6;15.6. Analyzing electron density and structure modification in LIB materials;543
10.2.7;15.7. Structure-property relationships in organic-based electrode materials for LIBs;546
10.2.8;15.8. Modeling specific power and rate capability: ionic and electronic conductivity;549
10.2.8.1;15.8.1. Ionic conductivity;549
10.2.8.2;15.8.2. Electronic conductivity;553
10.2.9;15.9. Modeling intercalation or conversion reactions in LIB materials;553
10.2.10;15.10. Modeling solid-electrolyte interphase (SEI) formation;556
10.2.11;15.11. Modeling microstructural properties in LIB materials;557
10.2.12;15.12. Modeling thermomechanical stresses in LIB materials;561
10.2.13;15.13. Multiscale modeling of LIB performance;564
10.2.14;15.14. Modeling emerging battery technologies: lithium-air batteries (LABs), all solid-state LIBs, and redox flow batteries;568
10.2.14.1;15.14.1. Lithium-air batteries;568
10.2.14.2;15.14.2. All solid-state LIBs;572
10.2.14.3;15.14.3. Redox-flow batteries;573
10.2.15;15.15. Conclusions;574
10.2.16;References;576
10.3;Chapter 16: Batteries for remote area power (RAP) supply systems;582
10.3.1;16.1. Introduction;582
10.3.2;16.2. Components of a RAPS system;585
10.3.2.1;16.2.1. System design considerations;586
10.3.3;16.3. Existing battery systems for RAPS;586
10.3.3.1;16.3.1. Lead acid;586
10.3.3.2;16.3.2. Nickel based;588
10.3.3.2.1;16.3.2.1. Nickel cadmium (Ni-Cd);588
10.3.3.2.2;16.3.2.2. Nickel metal hydride;590
10.3.3.3;16.3.3. Lithium ion;592
10.3.3.4;16.3.4. Flow batteries;594
10.3.3.4.1;16.3.4.1. Vanadium redox;594
10.3.3.4.2;16.3.4.2. Zinc bromine;595
10.3.3.5;16.3.5. Sodium sulfur;596
10.3.3.6;16.3.6. Battery technology comparison;598
10.3.4;16.4. Future considerations;598
10.3.4.1;16.4.1. Improvements to existing battery technologies;598
10.3.4.2;16.4.2. Hydrogen storage as an alternative energy storage system;601
10.3.5;16.5. Concluding remarks;602
10.3.6;References;603
10.4;Chapter 17: Applications of batteries for grid-scale energy storage;606
10.4.1;17.1. Introduction;606
10.4.2;17.2. Storage and electricity grids;606
10.4.2.1;17.2.1. Background to electricity networks;607
10.4.2.2;17.2.2. Load curves, summer/winter peaks, ancillary services;607
10.4.2.3;17.2.3. Electricity pricing;608
10.4.3;17.3. The need for storage;609
10.4.3.1;17.3.1. Frequency and voltage regulation;611
10.4.3.2;17.3.2. Renewables integration;612
10.4.3.3;17.3.3. Capital deferment: peak shaving and load leveling;613
10.4.4;17.4. Battery technologies;614
10.4.4.1;17.4.1. Lithium;614
10.4.4.2;17.4.2. Flow batteries;616
10.4.4.3;17.4.3. High-temperature batteries;616
10.4.4.4;17.4.4. Other advanced batteries;617
10.4.4.5;17.4.5. Supercapacitors;618
10.4.5;17.5. The effect of battery storage on the system;619
10.4.5.1;17.5.1. Losses;620
10.4.5.2;17.5.2. Greenhouse gas emissions;621
10.4.6;17.6. Location of storage;621
10.4.7;17.7. Regulatory and economic issues;622
10.4.7.1;17.7.1. Economics;623
10.4.7.2;17.7.2. Ownership;624
10.4.7.3;17.7.3. Regulatory influence;624
10.4.8;17.8. Sources of further information and advice;624
10.4.9;References;625
10.5;Index;628
Woodhead Publishing Series in Energy
1 Generating power at high efficiency: Combined cycle technology for sustainable energy production
Eric Jeffs 2 Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment
Edited by Kenneth L. Nash and Gregg J. Lumetta 3 Bioalcohol production: Biochemical conversion of lignocellulosic biomass
Edited by Keith W. Waldron 4 Understanding and mitigating ageing in nuclear power plants: Materials and operational aspects of plant life management (PLiM)
Edited by Philip G. Tipping 5 Advanced power plant materials, design and technology
Edited by Dermot Roddy 6 Stand-alone and hybrid wind energy systems: Technology, energy storage and applications
Edited by John K. Kaldellis 7 Biodiesel science and technology: From soil to oil
Jan C. J. Bart, Natale Palmeri and Stefano Cavallaro 8 Developments and innovation in carbon dioxide (CO2) capture and storage technology Volume 1: Carbon dioxide (CO2) capture, transport and industrial applications
Edited by M. Mercedes Maroto-Valer 9 Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste
Edited by Joonhong Ahn and Michael J. Apted 10 Wind energy systems: Optimising design and construction for safe and reliable operation
Edited by John D. Sørensen and Jens N. Sørensen 11 Solid oxide fuel cell technology: Principles, performance and operations
Kevin Huang and John Bannister Goodenough 12 Handbook of advanced radioactive waste conditioning technologies
Edited by Michael I. Ojovan 13 Membranes for clean and renewable power applications
Edited by Annarosa Gugliuzza and Angelo Basile 14 Materials for energy efficiency and thermal comfort in buildings
Edited by Matthew R. Hall 15 Handbook of biofuels production: Processes and technologies
Edited by Rafael Luque, Juan Campelo and James Clark 16 Developments and innovation in carbon dioxide (CO2) capture and storage technology Volume 2: Carbon dioxide (CO2) storage and utilisation
Edited by M. Mercedes Maroto-Valer 17 Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture
Edited by Ligang Zheng 18 Small and micro combined heat and power (CHP) systems: Advanced design, performance, materials and applications
Edited by Robert Beith 19 Advances in clean hydrocarbon fuel processing: Science and technology
Edited by M. Rashid Khan 20 Modern gas turbine systems: High efficiency, low emission, fuel flexible power generation
Edited by Peter Jansohn 21 Concentrating solar power technology: Principles, developments and applications
Edited by Keith Lovegrove and Wes Stein 22 Nuclear corrosion science and engineering
Edited by Damien Féron 23 Power plant life management and performance improvement
Edited by John E. Oakey 24 Electrical drives for direct drive renewable energy systems
Edited by Markus Mueller and Henk Polinder 25 Advanced membrane science and technology for sustainable energy and environmental applications
Edited by Angelo Basile and Suzana Pereira Nunes 26 Irradiation embrittlement of reactor pressure vessels (RPVs) in nuclear power plants
Edited by Naoki Soneda 27 High temperature superconductors (HTS) for energy applications
Edited by Ziad Melhem 28 Infrastructure and methodologies for the justification of nuclear power programmes
Edited by Agustín Alonso 29 Waste to energy conversion technology
Edited by Naomi B. Klinghoffer and Marco J. Castaldi 30 Polymer electrolyte membrane and direct methanol fuel cell technology Volume 1: Fundamentals and performance of low temperature fuel cells
Edited by Christoph Hartnig and Christina Roth 31 Polymer electrolyte membrane and direct methanol fuel cell technology Volume 2: In situ characterization techniques for low temperature fuel cells
Edited by Christoph Hartnig and Christina Roth 32 Combined cycle systems for near-zero emission power generation
Edited by Ashok D. Rao 33 Modern earth buildings: Materials, engineering, construction and applications
Edited by Matthew R. Hall, Rick Lindsay and Meror Krayenhoff 34 Metropolitan sustainability: Understanding and improving the urban environment
Edited by Frank Zeman 35 Functional materials for sustainable energy applications
Edited by John A. Kilner, Stephen J. Skinner, Stuart J. C. Irvine and Peter P. Edwards 36 Nuclear decommissioning: Planning, execution and international experience
Edited by Michele Laraia 37 Nuclear fuel cycle science and engineering
Edited by Ian Crossland 38 Electricity transmission, distribution and storage systems
Edited by Ziad Melhem 39 Advances in biodiesel production: Processes and technologies
Edited by Rafael Luque and Juan A. Melero 40 Biomass combustion science, technology and engineering
Edited by Lasse Rosendahl 41 Ultra-supercritical coal power plants: Materials, technologies and optimisation
Edited by Dongke Zhang 42 Radionuclide behaviour in the natural environment: Science, implications and lessons for the nuclear industry
Edited by Christophe Poinssot and Horst Geckeis 43 Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture: Solid oxygen- and CO2-carriers
Paul Fennell and E. J. Anthony 44 Materials’ ageing and degradation in light water reactors: Mechanisms, and management
Edited by K. L. Murty 45 Structural alloys for power plants: Operational challenges and high-temperature materials
Edited by Amir Shirzadi and Susan Jackson 46 Biolubricants: Science and technology
Jan C. J. Bart, Emanuele Gucciardi and Stefano Cavallaro 47 Advances in wind turbine blade design and materials
Edited by Povl Brøndsted and Rogier P. L. Nijssen 48 Radioactive waste management and contaminated site clean-up: Processes, technologies and international experience
Edited by William E. Lee, Michael I. Ojovan, Carol M. Jantzen 49 Probabilistic safety assessment for optimum nuclear power plant life management (PLiM): Theory and application of reliability analysis methods for major power...