E-Book, Deutsch, Englisch, 586 Seiten
Michler / Baltá-Calleja Nano- and Micromechanics of Polymers
1. Auflage 2012
ISBN: 978-3-446-42844-7
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Structure Modification and Improvement of Properties
E-Book, Deutsch, Englisch, 586 Seiten
ISBN: 978-3-446-42844-7
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
The book brings together the detailed knowledge of structure and morphology of the main classes of polymers, including commodities as well as special polymers, with the explanation of the mechanical properties, processes and mechanisms on macroscopic, microscopic and nanoscopic scale. Description, explanation and theoretical interpretation of all of the micro- and nanoscopic processes and mechanisms in different polymers constitute the central part the book. Thus, it offers a key for a better understanding of structure-property-correlations of nearly all polymers of interest in industrial applications. A central aim of the book is to show, how by changing the morphology, microprocesses and, finally, the mechanical properties can be improved. There is no other book available on the market, which is focused on micromechanical processes of polymers and their role to improve the properties of polymeric materials.
Autoren/Hrsg.
Weitere Infos & Material
1;Table of Contents;6
2;Preface;12
3;List of Abbreviations;16
4;I Aim and methods;20
4.1;1 General Importance of Polymers and Trends;22
4.1.1;1.1 Relevance of Polymeric Materials;22
4.1.2;1.2 Materials Science Aspects;24
4.1.3;1.3 Molecular and Supramolecular Structures;26
4.1.3.1;1.3.1 Molecular Structures;26
4.1.3.2;1.3.2 Supramolecular Structures, Morphology;32
4.1.4;1.4 Polymer Modification ;40
4.1.4.1;1.4.1 Copolymers;41
4.1.4.2;1.4.2 Polymer Blends;43
4.1.4.3;1.4.3 Particulate Composites;47
4.1.4.4;1.4.4 Short Fiber Reinforced Polymers;49
4.1.4.5;1.4.5 Conclusions;50
4.2;2 Methods and Investigation Techniques;54
4.2.1;2.1 Methods of Structure and Morphology Analysis;54
4.2.1.1;2.1.1 Macroscale Methods;54
4.2.1.1.1;2.1.1.1 X-Ray Diffraction Techniques (WAXS, SAXS);54
4.2.1.1.2;2.1.1.2 Other Scattering Techniques;58
4.2.1.1.3;2.1.1.3 Spectroscopic Techniques and Thermal Methods;59
4.2.1.2;2.1.2 Local, Microscopic Methods;68
4.2.1.2.1;2.1.2.1 Optical Microscopy (OM);69
4.2.1.2.2;2.1.2.2 Confocal Scanning Optical Microscopy;71
4.2.1.2.3;2.1.2.3 Scanning Electron Microscopy (SEM) ;71
4.2.1.2.4;2.1.2.4 Transmission Electron Microscopy (TEM);75
4.2.1.2.5;2.1.2.5 Atomic Force Microscopy (AFM);78
4.2.1.2.6;2.1.2.6 Comparison of Microscopic Techniques;80
4.2.2;2.2 Methods of Nano- and Micromechanical Analysis;82
4.2.2.1;2.2.1 Macroscale Methods;82
4.2.2.1.1;2.2.1.1 Scattering (Diffraction) Methods;82
4.2.2.1.2;2.2.1.2 Interference Optics;83
4.2.2.1.3;2.2.1.3 Spectroscopic Techniques (Rheo-Optical Methods);83
4.2.2.1.4;2.2.1.4 Other Techniques;85
4.2.2.2;2.2.2 Local (Microscopic) Methods;85
4.2.2.2.1;2.2.2.1 Overview;85
4.2.2.2.2;2.2.2.2 In-Situ Microscopy;89
4.2.3;2.3 Mechanical “Micro-Testing”;99
4.2.3.1;2.3.1 Mechanical Testing of Micro-Sized Specimens;101
4.2.3.2;2.3.2 Microindentation Tests;103
4.2.3.2.1;2.3.2.1 Imaging Method;103
4.2.3.2.2;2.3.2.2 Basic Aspects of Microindentation: Contact Geometry;104
4.2.3.2.3;2.3.2.3 Depth Sensing Measurements;105
5;II General mechanisms of deformation and fracture;114
5.1;3 Deformation Phenomena and Mechanisms;116
5.1.1;3.1 Basic Types of Mechanical Behavior;116
5.1.2;3.2 Influence of Specimen Size;122
5.1.3;3.3 Deformation Mechanisms;127
5.1.4;3.4 Molecular Parameters and Mechanisms;129
5.1.4.1;3.4.1Molecular Mobility and Entanglements;129
5.1.4.2;3.4.2 Molecular Micro-Mechanisms;134
5.2;4 Crazing;138
5.2.1;4.1 The Phenomenon of „Craze“;138
5.2.2;4.2 Characteristics of Crazes;140
5.2.3;4.3 Variety of Craze Structures;144
5.2.4;4.4 Craze Initiation;153
5.2.4.1;4.4.1 Formation of Pre-Crazes ;154
5.2.4.2;4.4.2 Transformation of Pre-Crazes into Fibrillated Crazes;159
5.2.5;4.5 Craze Growth and Fracture;161
5.2.5.1;4.5.1 Length Growth;161
5.2.5.2;4.5.2 Thickness Growth;162
5.2.5.3;4.5.3 Craze Fracture;164
5.2.6;4.6 Factors Influencing Craze Initiation and Growth;166
5.2.7;4.7 Structure Initiated Crazes;172
5.3;5 Fracture Phenomena and Mechanisms;178
5.3.1;5.1 Overview;178
5.3.2;5.2 Principles of Brittle Fracture of Polymers;179
5.3.3;5.3 Stress Concentrations at Particles and Voids;184
5.3.3.1;5.3.1 Soft Particles;185
5.3.3.2;5.3.2 Hard Particles;189
5.3.3.3;5.3.3 Thermal Stresses ;189
5.3.3.4;5.3.4 Energetic Effects;191
5.3.3.5;5.3.5 Stress Concentration Effects in Different Particle/Void Arrangements;192
5.3.3.5.1;5.3.5.1 Particle/Void Size;192
5.3.3.5.2;5.3.5.2 Particle/Void Distance;193
5.3.4;5.4 Toughness Enhancing Mechanisms;194
5.3.5;5.5 Fracture Surface Analysis and Damage Analysis;197
6;III Main groups of polymer materials;202
6.1;6 Amorphous Polymers;204
6.1.1;6.1 Overview;204
6.1.2;6.2 Amorphous Homopolymers;207
6.1.2.1;6.2.1 Polystyrol (PS);207
6.1.2.1.1;6.2.1.1 Deformation Characteristics;207
6.1.2.1.2;6.2.1.2 Modification of Crazes;212
6.1.2.2;6.2.2 Polymethylmethacrylate (PMMA);215
6.1.2.3;6.2.3 Polyvinylchloride (PVC);217
6.1.2.4;6.2.4 Polycarbonate (PC);218
6.1.2.5;6.2.5 Other Amorphous Homopolymers;223
6.1.3;6.3 Copolymers;223
6.1.3.1;6.3.1 Styrene-Acrylonitrile-Copolymers (SAN);223
6.1.3.2;6.3.2 Cyclic Olefin Copolymers (COC);224
6.1.4;6.4 Comparison of Crazes;228
6.1.5;6.5 Resins, Thermosets;230
6.2;7 Semicrystalline Polymers;234
6.2.1;7.1 Overview;234
6.2.2;7.2 General Deformation Mechanisms;237
6.2.2.1;7.2.1 Brittle Behavior;238
6.2.2.1.1;7.2.1.1 Initiation of Brittle Fracture by Morphological Defects;238
6.2.2.1.2;7.2.1.2 Brittle Fracture of Low Molecular Weight Materials;240
6.2.2.1.3;7.2.1.3 Brittle Fracture at Low Temperatures;243
6.2.2.1.4;7.2.1.4 Environmental Stress Crazing/Cracking;243
6.2.2.1.5;7.2.1.5 Physical Ageing;244
6.2.2.2;7.2.2 Craze-Like Mechanisms;244
6.2.2.2.1;7.2.2.1 Crazing at Low Temperatures;244
6.2.2.2.2;7.2.2.2 Crazing at Brittle Fracture Above Tg,am;245
6.2.2.2.3;7.2.2.3 Environmental Crazing;247
6.2.2.2.4;7.2.2.4 Crazing under Plastic Deformation;249
6.2.2.2.5;7.2.2.5 Formation of Chevron Pattern;251
6.2.2.3;7.2.3 Ductile Behavior;254
6.2.2.3.1;7.2.3.1 Plastic Deformation of Spherulites;254
6.2.2.3.2;7.2.3.2 Deformation on the Amorphous/Lamellar Level;256
6.2.2.3.3;7.2.3.3 Strain Hardening and Self-Reinforcement;261
6.2.2.4;7.2.4 Deformation of Crystals and Lamellae ;261
6.2.2.5;7.2.5 Self-Reinforcement and High Strength Materials;263
6.2.2.5.1;7.2.5.1 Oriented Structures by Melt Processing;263
6.2.2.5.2;7.2.5.2 Oriented Structures by Solution(Gel)-Spinning;265
6.2.3;7.3 Examples;266
6.2.3.1;7.3.1 Polyethylenes;266
6.2.3.1.1;7.3.1.1 Influence of Molecular Weight;266
6.2.3.1.2;7.3.1.2 Influence of Chain Architecture: Branching;269
6.2.3.1.3;7.3.1.3 Influence of Processing;273
6.2.3.2;7.3.2 Polypropylenes;274
6.2.3.2.1;7.3.2.1 Influence of Molecular Weight ;274
6.2.3.2.2;7.3.2.2 Crystalline Modification;277
6.2.3.2.3;7.3.2.3 Influence of the Deformation Temperature;284
6.2.3.2.4;7.3.2.4 Additional Effects;286
6.2.3.3;7.3.3 Polyamides;287
6.2.3.4;7.3.4 Polyurethanes;289
6.2.3.5;7.3.5 Polyethylene Terephthalate (PET);289
6.2.3.6;7.3.6 Syndiotactic Polystyrene;290
6.2.3.7;7.3.7 Fluoropolymers: PTFE, PVDF;292
6.2.3.8;7.3.8 Comparison of different polymers;293
6.3;8 Polymer Blends;300
6.3.1;8.1 Overview;300
6.3.2;8.2 Thermoplastic/Thermoplastic Blends;303
6.3.2.1;8.2.1 Blend Formation;303
6.3.2.2;8.2.2 Morphology;303
6.3.2.3;8.2.3 Micromechanical Properties;304
6.3.2.3.1;8.2.3.1 Blends of Amorphous Polymers;304
6.3.2.3.2;8.2.3.2 Blends of Amorphous and Semicrystalline Polymers;308
6.3.2.3.3;8.2.3.3 Blends of Semicrystalline Polymers;313
6.3.3;8.3 Rubbers and Elastomers;318
6.3.3.1;8.3.1 Overview;318
6.3.3.2;8.3.2 Typical Morphology;321
6.3.3.3;8.3.3 Micromechanical Behavior;324
6.3.4;8.4 Inclusion Yielding;328
6.4;9 Rubber Toughened Polymers;334
6.4.1;9.1 Overview;334
6.4.2;9.2 Morphology;336
6.4.3;9.3 Basic Micromechanical Mechanisms;339
6.4.3.1;9.3.1 Survey of Micromechanical Behavior;339
6.4.3.2;9.3.2 Rubber Particle Volume Content;347
6.4.3.3;9.3.3 Rubber Particle Modulus;350
6.4.3.4;9.3.4 Grafting Influence (Interfacial Bonding);351
6.4.3.5;9.3.5 Particle Size;352
6.4.3.6;9.3.6 Additional Factors ;359
6.4.4;9.4 Disperse Systems;361
6.4.4.1;9.4.1 Disperse Systems with Amorphous Matrix;361
6.4.4.2;9.4.2 Disperse Systems with Semicrystalline Matrix;370
6.4.5;9.5 Rubber Network Systems;379
6.5;10 Composites;388
6.5.1;10.1 Overview;388
6.5.2;10.2 Particle-Reinforced Polymer Composites;389
6.5.2.1;10.2.1 Morphology of Particle-Filled Polymers;389
6.5.2.2;10.2.2 Micromechanical Effects;391
6.5.2.2.1;10.2.2.1 Composites with a Tough Matrix (PE, PP);391
6.5.2.2.2;10.2.2.2 Composites with a Stiff Matrix ;402
6.5.2.2.3;10.2.2.3 Conclusion ;403
6.5.3;10.3 Nanoparticle Polymer Composites;404
6.5.3.1;10.3.1 Overview and General Dependences;404
6.5.3.2;10.3.2 Micromechanical Effects in Different Classes of Nanocomposites;408
6.5.3.2.1;10.3.2.1 Zero-Dimensional Filler Nanoparticles (POSS);408
6.5.3.2.2;10.3.2.2 One-Dimensional Carbon Nanotubes (CNT);409
6.5.3.2.3;10.3.2.3 Two-Dimensional Layered Particles;414
6.5.3.2.4;10.3.2.4 Three-Dimensional Filler Particles;418
6.5.4;10.4 Fiber-Reinforced Polymer Composites;424
6.5.4.1;10.4.1 Overview;424
6.5.4.2;10.4.2 General Micromechanical Effects;425
6.6;11 Nanostructured Polymers;434
6.6.1;11.1 Overview;434
6.6.2;11.2 Block Copolymers;435
6.6.2.1;11.2.1 Introduction;435
6.6.2.2;11.2.2 Diversity in Morphologies and Properties;436
6.6.2.3;11.2.3 Micromechanical Behavior of Block Copolymers;443
6.6.2.4;11.2.4 Functional BCPs and Nanocomposites;455
6.6.2.5;11.2.5 Microdeformation Behavior in Block Copolymer/Polystyrene Blends;459
6.6.2.5.1;11.2.5.1 Blends Containing Macrophase-Separated PS Particles;459
6.6.2.5.2;11.2.5.2 Blends with Oriented Layers;460
6.6.2.5.3;11.2.5.3 Blends with Droplet Morphologies;462
6.6.2.6;11.2.6 Microhardness vs. Micromechanical Mechanisms ;465
6.6.2.7;11.2.7 Mechanism of Chevron Formation;468
6.6.3;11.3 Coextruded Multilayered Polymers;470
6.6.3.1;11.3.1 Overview of Microlayered Composites and Coextrusion Technology;470
6.6.3.2;11.3.2 Structure-Property Correlations in Multilayered Composites Comprising Amorphous Polymers;476
6.6.3.3;11.3.3 Multilayered Crystalline/Amorphous Polymer Combinations;487
6.6.3.4;11.3.4 Multilayered Crystalline/Crystalline Polymer Combinations;494
6.6.4;11.4 Nanofibers;496
6.6.4.1;11.4.1 Overview;496
6.6.4.2;11.4.2 Electrostatic Spinning (Electrospinning);497
6.6.4.3;11.4.3 Typical Fiber Structures;498
6.6.4.3.1;11.4.3.1 Fibers with Porous Structures;498
6.6.4.3.2;11.4.3.2 Fibers with Beads and Ribbon-Like Structures;499
6.6.4.3.3;11.4.3.3 Fibers with Helical and Twisted Structures;500
6.6.4.3.4;11.4.3.4 Fibers with Rough Surfaces ;501
6.6.4.3.5;11.4.3.5 Fibers with Core Sheath Structures;502
6.6.4.4;11.4.4 Mechanical Properties of Polystyrene (PS) Nanofibers;503
6.6.4.5;11.4.5 Nanofibers – Nanocomposites;507
6.6.5;11.5 Conclusions;508
6.7;12 Special Forms and Applications;520
6.7.1;12.1 Overview, Special Forms;520
6.7.2;12.2 Hot Compacted Oriented Films/Fibers ;522
6.7.2.1;12.2.1 Overview;522
6.7.2.2;12.2.2 Hot Compacted Oriented Fibers;524
6.7.2.3;12.2.3 Hot Compacted Oriented Films;528
6.7.2.4;12.2.4 Conclusions;531
6.7.3;12.3 Biomedical Polymers;531
6.7.3.1;12.3.1 UHMWPE;533
6.7.3.1.1;12.3.1.1 Morphology and Properties of UHMWPE;533
6.7.3.1.2;12.3.1.2 Application of UHMWPE in Hips and Knee Joints;538
6.7.3.2;12.3.2 Polymethylmethacrylate (PMMA);545
6.7.3.3;12.3.3 Bioresorbable Polymers;548
6.7.3.4;12.3.4 Bone Substitutes;551
6.7.3.5;12.3.5 Electrospun Nanofibers;554
6.7.3.5.1;12.3.5.1 Nanofibrous Scaffolds for Tissue Engineering of Skin;554
6.7.3.5.2;12.3.5.2 Dentistry Applications;555
6.7.3.5.3;12.3.5.3 Scaffolds for Bone Tissue Engineering;557
6.7.4;12.4 Biopolymers;558
7;Index;576
Part I: Polymeric Materials 1. The relevance of polymers 2. General properties 3. Trends in polymer science. Routes for the modification of polymers Part II: Techniques to study polymers 4. Techniques to investigate structure and morphology 5. Techniques to investigate the mechanical properties 6. Techniques to investigate the nano- and micromechanical properties and processes Part III: Overview: Structure and morphology of polymers 7. Chemical/molecular structures 8. Supermolecular structures (morphology) Part IV: Overview: Nano- and Micromechanical processes and mechanisms 9. Types of deformation 10. Processes/mechanisms 11. Fracture processes 12. Mechanisms to enhance the mechanical properties (stiffness, strength, toughness) Part V: Main types of polymer materials (detailed description) 13. Amorphous polymers 14. Semicrystalline polymers 15. Blockcopolymers 16. Polymer blends 17. Rubber-toughened polymers 18. Rubbers and elastomers 19. Polymer Composites 20. Fibre-reinforced polymers 21. Nanofibres 22. Multilayered, hot-compacted polymers 23. Foamed polymers 24. Biomedical polymers