Miller / Michel | Ordinary Differential Equations | E-Book | sack.de
E-Book

E-Book, Englisch, 366 Seiten, Web PDF

Miller / Michel Ordinary Differential Equations


1. Auflage 2014
ISBN: 978-1-4832-5910-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 366 Seiten, Web PDF

ISBN: 978-1-4832-5910-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity, prerequisites have been kept to a minimum and the material is covered in such a way as to be appealing to a wide audience. The book contains eight chapters and begins with an introduction the subject and a discussion of some important examples of differential equations that arise in science and engineering. Separate chapters follow on the fundamental theory of linear and nonlinear differential equations; linear boundary value problems; Lyapunov stability theory; and perturbations of linear systems. Subsequent chapters deal with the Poincare-Bendixson theory and with two-dimensional van der Pol type equations; and periodic solutions of general order systems.

Miller / Michel Ordinary Differential Equations jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Ordinary Differential Equations;4
3;Copyright Page;5
4;Table of Contents;8
5;Dedication;6
6;PREFACE;12
7;ACKNOWLEDGMENTS;14
8;CHAPTER 1. INTRODUCTION ;16
8.1;1.1 Initial Value Problems;16
8.2;1.2 Examples of Initial Value Problems;22
8.3;Problems;50
9;CHAPTER 2. FUNDAMENTAL THEORY;54
9.1;2.1 Preliminaries;55
9.2;2.2 Existence of Solutions;60
9.3;2.3 Continuation of Solutions;64
9.4;2.4 Uniqueness of Solutions;68
9.5;2.5 Continuity of Solutions with Respect to Parameters;73
9.6;2.6 Systems of Equations;78
9.7;2.7 Differentiability with Respect to Parameters;83
9.8;2.8 Comparison Theory;85
9.9;2.9 Complex Valued Systems;89
9.10;Problems;90
10;CHAPTER 3. LINEAR SYSTEMS;95
10.1;3.1 Preliminaries;95
10.2;3.2 Linear Homogeneous and Nonhomogeneous Systems;103
10.3;3.3 Linear Systems with Constant Coefficients;115
10.4;3.4 Linear Systems with Periodic Coefficients;127
10.5;3.5 Linear nth Order Ordinary Differential Equations;132
10.6;3.6 Oscillation Theory;140
10.7;Problems;145
11;CHAPTER 4. BOUNDARY VALUE PROBLEMS;152
11.1;4.1 Introduction;152
11.2;4.2 Separated Boundary Conditions;158
11.3;4.3 Asymptotic Behavior of Eigenvalues;162
11.4;4.4 Inhomogeneous Problems;167
11.5;4.5 General Boundary Value Problems;174
11.6;Problems;179
12;CHAPTER 5. STABILITY;182
12.1;5.1 Notation;183
12.2;5.2 The Concept of an Equilibrium Point;184
12.3;5.3 Definitions of Stability and Boundedness;187
12.4;5.4 Some Basic Properties of Autonomous and Periodic Systems;193
12.5;5.5 Linear Systems;194
12.6;5.6 Second Order Linear Systems;201
12.7;5.7 Lyapunov Functions;209
12.8;5.8 Lyapunov Stability and Instability Results: Motivation;217
12.9;5.9 Principal Lyapunov Stability and Instability Theorems;220
12.10;5.10 Linear Systems Revisited;233
12.11;5.11 Invariance Theory;236
12.12;5.12 Domain of Attraction;245
12.13;5.13 Converse Theorems;249
12.14;5.14 Comparison Theorems;254
12.15;5.15 Applications: Absolute Stability of Regulator Systems;258
12.16;Problems;265
13;CHAPTER 6. PERTURBATIONS OF LINEAR SYSTEMS;273
13.1;6.1 Preliminaries;273
13.2;6.2 Stability of an Equilibrium Point;275
13.3;6.3 The Stable Manifold;280
13.4;6.4 Stability of Periodic Solutions;288
13.5;6.5 Asymptotic Equivalence;295
13.6;Problems;300
14;CHAPTER 7. PERIODIC SOLUTIONS OF TWO-DIMENSIONAL SYSTEMS;305
14.1;7.1 Preliminaries;305
14.2;7.2 Poincaré-Bendixson Theory;307
14.3;7.3 The Levinson–Smith Theorem;313
14.4;Problems;317
15;CHAPTER 8. PERIODIC SOLUTIONS OF SYSTEMS;320
15.1;8.1 Preliminaries;321
15.2;8.2 Nonhomogeneous Linear Systems;321
15.3;8.3 Perturbations of Nonlinear Periodic Systems;327
15.4;8.4 Perturbations of Nonlinear Autonomous Systems;332
15.5;8.5 Perturbations of Critical Linear Systems;334
15.6;8.6 Stability of Systems with Linear Part Critical;339
15.7;8.7 Averaging;345
15.8;8.8 Hopf Bifurcation;348
15.9;8.9 A Nonexistence Result;350
15.10;Problems;353
16;BIBLIOGRAPHY;357
17;INDEX;361



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.