Buch, Englisch, 740 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1294 g
Buch, Englisch, 740 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1294 g
Reihe: Mathematics and its Applications
ISBN: 978-0-7923-2064-7
Verlag: Springer Netherlands
One service mathematic;., has Jcndcml the 'Et moi,. ~ si j'avait su comment CD revcnir, human race. It has put COIDDlOJI SCIISC back je n'y scrais point allC.' whc:rc it belongs, on the topmost shell next Jules Verne to the dusty canister labc1lcd 'dilcardcd nOD- The series is divergent; tbcre(on: we may be sense'. Eric T. Bcll able to do something with it o. Hcavisidc Mathematics is a tool for thought. A highly necessary tooll in a world where both feedbaclt and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other paJts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics.'; 'One service logic has rendered com puter science.'; 'One service category theory has rendered mathematics.'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
Weitere Infos & Material
I. Convex functions and Jensen’s inequality.- II. Some recent results involving means.- III. Bernoulli’s inequality.- IV. Cauchy’s and related inequalities.- V. Hölder’s and Minkowski’s inequalities.- VI. Generalized Hölder and Minkowski inequalities.- VII. Connections between general inequalities.- VIII. Some Determinantal and Matrix inequalities.- IX. ?ebyšev’s inequality.- X. Grüss’ inequality.- XI. Steffensen’s inequality.- XII. Abel’s and related inequalities.- XIII. Some inequalities for monotone functions.- XIV. Young’s inequality.- XV. Bessel’s inequality.- XVI. Cyclic inequalities.- XVII. Triangle inequalities.- XVIII. Norm inequalities.- XIX. More on norm inequalities.- XX. Gram’s inequality.- XXI. Fejér-Jackson’s inequalities and related results.- XXII. Mathieu’s inequality.- XXIII. Shannon’s inequality.- XXIV. Turán’s inequality from the power sum theory.- XXV. Continued fractions and Padé approximation method.- XXVI. Quasilinearizai ion methods for proving inequalities.- XXVII. The centroid method in inequalities.- XXVIII. Dynamic programming and functional equation approaches to inequalities.- XXIX. Interpolation inequalities.- XXX. Convex Mini max inequalities-equalities.- Name Index.