E-Book, Englisch, Band 54, 241 Seiten, eBook
Mitrovic / Milosevic / Mladenovic Experimental and Numerical Investigations in Materials Science and Engineering
1. Auflage 2018
ISBN: 978-3-319-99620-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the International Conference of Experimental and Numerical Investigations and New Technologies, CNNTech 2018
E-Book, Englisch, Band 54, 241 Seiten, eBook
Reihe: Lecture Notes in Networks and Systems
ISBN: 978-3-319-99620-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Organization;8
2.1;Scientific Committee;8
3;Contents;10
4;Materials Science;13
5;Thermal and Mechanical Characteristics of Dual Cure Self-etching, Self-adhesive Resin Based Cement;14
5.1;Abstract;14
5.2;1 Introduction;15
5.3;2 Experimental Setup and Procedure;16
5.4;3 Results and Discussion;17
5.5;4 Conclusions;23
5.6;Acknowledgement;23
5.7;References;23
6;TGA-DSC-MS Analysis of Pyrolysis Process of Various Biomasses with Isoconversional (Model-Free) Kinetics;27
6.1;Abstract;27
6.2;1 Introduction;27
6.3;2 Materials and Methods;29
6.3.1;2.1 Materials and Sampling Procedure;29
6.3.2;2.2 Simultaneous Thermal Analysis (STA) Measurements;29
6.3.3;2.3 Mass Spectrometry (MS) Analysis;30
6.3.4;2.4 Theoretical Background;30
6.4;3 Results and Discussion;31
6.4.1;3.1 Results of Proximate and Ultimate Analysis and Bio-char Yields;31
6.4.2;3.2 TGA-DTG-DSC Curves of Pyrolysis Processes of Various Biomass Samples;33
6.4.3;3.3 Analysis of Gases Produced During Pyrolysis;36
6.4.4;3.4 Isoconversional Analysis;39
6.5;4 Conclusions;41
6.6;Acknowledgments;41
6.7;References;41
7;Thermal Energy Storage of Composite Materials Based on Clay, Stearic Acid, Paraffin and Glauber’s Salt as Phase Change Materials;45
7.1;Abstract;45
7.2;1 Introduction;46
7.3;2 Experimental;48
7.3.1;2.1 Materials;48
7.3.2;2.2 Heterogeneous Gel Based on Alkali Bentonite Clay Activation Making Procedure;48
7.3.3;2.3 Characterization of the Heterogeneous Gel;48
7.4;3 Results and Discussion;49
7.5;4 Conclusion;52
7.6;References;52
8;Experimental Investigation of Mechanical Properties on Friction Stir Welded Aluminum 2024 Alloy;55
8.1;Abstract;55
8.2;1 Introduction;55
8.3;2 Experimental Work;57
8.4;3 Results and Discussions;61
8.5;4 Conclusions;67
8.6;References;68
9;Possibility for Removing Products of Thermal Degradation of Edible Oil by Natural Aluminosilicates;70
9.1;Abstract;70
9.2;1 Introduction;70
9.3;2 Use of Aluminosilicate in Environmental Protection;72
9.4;3 Materials and Methods;75
9.4.1;3.1 Materials;75
9.4.2;3.2 Methods;75
9.5;4 Results and Discussion;76
9.6;5 Conclusion;80
9.7;References;80
10;Study of Water Vapor Resistance of Co/PES Fabrics Properties During Maintenance;83
10.1;Abstract;83
10.2;1 Introduction;83
10.3;2 Experimental Part;85
10.3.1;2.1 Materials;85
10.4;3 Methods;85
10.4.1;3.1 Hot Plate Method;86
10.4.2;3.2 Comfort Rating According to Ret Values;86
10.4.3;3.3 Establishing the Mathematical Model of Dependence of Ret Values on the Number of Washing Cycles;87
10.5;4 Results and Discussion;87
10.5.1;4.1 Functional Dependence of Ret Values on the Number of Washing Cycles;91
10.6;5 Conclusion;93
10.7;References;94
11;Experimental Dimensional Accuracy Analysis of Reformer Prototype Model Produced by FDM and SLA 3D Printing Technology;95
11.1;Abstract;95
11.2;1 Introduction;95
11.3;2 Materials and Methods;98
11.4;3 Results and Discussion;102
11.5;4 Conclusion;105
11.6;Acknowledgement;105
11.7;References;105
12;Application of Numerical Methods in Design and Analysis of Orthopedic Implant Integrity;107
12.1;Abstract;107
12.2;1 Introduction;107
12.3;2 Application of FEM in Analysis of Behavior of Biomaterials with Cracks;109
12.4;3 Application of X-FEM Method to Crack Growth Simulation;110
12.5;4 Numerical Calculation of Selected Hip Implant Models;111
12.5.1;4.1 Development of Numerical Models;112
12.5.2;4.2 Discretization of Structure in Numerical Models;113
12.6;5 Development of a Model with a Crack;114
12.7;6 Results of Numerical Analysis;115
12.8;7 Conclusions;119
12.9;References;120
13;Measurement of the Stress State in the Lower Link of the Three-Point Hitch Mechanism;123
13.1;Abstract;123
13.2;1 Introduction;123
13.3;2 Field Tests Preparation;125
13.4;3 Measurement Results;127
13.5;4 Conclusion;131
13.6;Acknowledgement;131
13.7;References;131
14;Engineering;133
15;Research of Lean Premixed Flame by Chemiluminescence Tomography;134
15.1;Abstract;134
15.2;1 Introduction;134
15.3;2 Flame Imaging Method;135
15.4;3 Experimental;138
15.5;4 Results and Discussion;140
15.6;5 Conclusions;144
15.7;References;144
16;freeCappuccino - An Open Source Software Library for Computational Continuum Mechanics;146
16.1;Abstract;146
16.2;1 Introduction;146
16.3;2 Handling Complex Geometry and Computational Meshes;147
16.4;3 Tensor Fields Manipulation;149
16.5;4 Finite Volume Discretisation;151
16.6;5 Linear Algebra;151
16.7;6 Parallelisation;153
16.8;7 Example Simulation Results;153
16.9;8 Conclusion;156
16.10;Acknowledgements;156
16.11;References;156
17;Multiparameter Structural Optimization of Pressure Vessel with Two Nozzles;157
17.1;Abstract;157
17.2;1 Introduction;157
17.3;2 Experimental Analysis;158
17.3.1;2.1 Basic Model;158
17.3.2;2.2 Experimental Findings;159
17.4;3 Finite Element Analysis;160
17.4.1;3.1 Optimization of the Pressure Vessel Geometry;162
17.5;4 Discussion;164
17.6;5 Conclusion;165
17.7;Acknowledgements;165
17.8;References;165
18;Mathematical Modelling and Performance Analysis of a Small-Scale Combined Heat and Power System Based on Biomass Waste Downdraft Gasification;168
18.1;Abstract;168
18.2;1 Introduction;168
18.3;2 Development of Mathematical Models;169
18.4;3 Downdraft Gasification CHP System Description;170
18.5;4 CHP System Modelling;170
18.5.1;4.1 Process Model Simulator;170
18.5.2;4.2 Model Settings;171
18.5.3;4.3 Model Description of the Different CHP Units;172
18.6;5 Results and Discussion;175
18.6.1;5.1 Configuration;176
18.6.2;5.2 Configuration;176
18.6.3;5.3 Configuration;177
18.7;6 Conclusions;180
18.8;References;181
19;Determination of the Wing Conveyor Idlers’ Axial Loads Using the Finite Element Method;183
19.1;Abstract;183
19.2;1 Introduction;184
19.2.1;1.1 Belt Conveyors and Their Components;184
19.2.2;1.2 Conveyor Idlers Testing Methodologies;185
19.3;2 Determination of the Conveyor Idlers Radial and Axial Loads;188
19.3.1;2.1 Load Distribution in the Transverse Direction;188
19.3.2;2.2 Determination of the Conveyor Belts Modulus of Elasticity in the Lateral Direction;192
19.3.3;2.3 Numerical Model of the Test According to the DIN 22102 Standard;194
19.3.4;2.4 The Quarterly Field Model of the Belt Between Garlands;195
19.3.5;2.5 Wing Conveyor Idlers Axial Load Intensity;196
19.4;3 Conveyor Idlers Testing Machine;198
19.5;4 Conclusion;199
19.6;Acknowledgement;200
19.7;References;200
20;Mathematical Modelling Approach of WntSignalling PATHWAY Analyse in Alzheimer Disease;202
20.1;Abstract;202
20.2;1 Introduction;203
20.3;2 Roles of Signalling Pathways and Crosstalk of Complex Network of Signalling Pathway;205
20.4;3 WntSignaling Pathway;206
20.5;4 Description of the Mechanism;206
20.6;5 Biochemical Reactions;207
20.7;6 Mathematical Model of Wnt Signalling Pathway;210
20.8;7 Simulation Results;211
20.9;8 Analysis of Mathematical Model;214
20.10;9 Conclusion;215
20.11;References;215
21;Identification and Recognition of Vehicle Environment Using Artificial Neural Networks;217
21.1;Abstract;217
21.2;1 Introduction;217
21.3;2 Object Detection Using Convolutional Neural Networks;218
21.3.1;2.1 Convolutional Layers;219
21.3.2;2.2 Pooling (Subsampling) Layers;220
21.3.3;2.3 Non-linear Layers;220
21.3.4;2.4 Fully Connected Layers;221
21.4;3 Classifying Objects Using the Faster Convolutional Neural Network (Faster R-CNN);222
21.5;4 Results and Discussion;223
21.5.1;4.1 Dataset Description;223
21.5.2;4.2 Test Results;223
21.6;5 Conclusion;226
21.7;References;226
22;Model Predictive Control of a Medical Robotic System;229
22.1;Abstract;229
22.2;1 Introduction;229
22.3;2 Mathematical Model of the System;230
22.4;3 Model Predictive Controller;232
22.5;4 Results;235
22.6;5 Conclusion;238
22.7;References;238
23;Author Index;240