E-Book, Englisch, Band Volume 119, 524 Seiten
Mori Adenosine Receptors in Neurology and Psychiatry
1. Auflage 2014
ISBN: 978-0-12-801318-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, Band Volume 119, 524 Seiten
Reihe: International Review of Neurobiology
ISBN: 978-0-12-801318-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
This well-established international series examines major areas of basic and clinical research within neuroscience, as well as emerging and promising subfields. This volume concentrates on adenosine receptor science, providing insights useful for actual drug discovery/development in neurology and psychiatry areas. - Expertise of contributors - Subject including practical drug development from basic science, as translational research taste - Structure of contents focusing on two CNS areas for diseases (neurology and psychiatry)
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Adenosine Receptors in Neurology and Psychiatry;4
3;Copyright;5
4;Contents;6
5;Contributors;12
6;Preface;16
7;Chapter One: Adenosine Receptor Neurobiology: Overview;18
7.1;1. General Introduction;19
7.2;2. Source and Regulation of Extracellular Adenosine Level;21
7.3;3. ARs Subtypes: Classification and Gene Structures;22
7.3.1;3.1. A novel protein transcribed from a different frame of the A2AR gene;23
7.4;4. Expression of ARs in the Brain;24
7.4.1;4.1. A1 receptor;24
7.4.2;4.2. A2A receptor;24
7.4.3;4.3. A2B and A3 receptors;25
7.5;5. Structure Biology of Adenosine A2A Receptors;25
7.6;6. Canonical and Noncanonical Signaling Pathways of ARs;26
7.6.1;6.1. A1 adenosine receptor;28
7.6.1.1;6.1.1. Canonical pathways;28
7.6.1.2;6.1.2. Noncanonical pathways;29
7.6.2;6.2. A2A adenosine receptor;29
7.6.2.1;6.2.1. Canonical pathways (Fredholm et al., 2007);29
7.6.2.2;6.2.2. Noncanonical pathways;30
7.6.2.2.1;6.2.2.1. ß-Arrestin-dependent pathway;30
7.6.2.2.2;6.2.2.2. Accessory proteins that binds to the C terminus of A2AR;31
7.6.3;6.3. A2B adenosine receptor;33
7.6.3.1;6.3.1. Canonical pathways;33
7.6.3.2;6.3.2. Noncanonical pathways;33
7.6.4;6.4. A3 adenosine receptor;34
7.6.4.1;6.4.1. Canonical pathways;34
7.6.4.2;6.4.2. Noncanonical pathways;35
7.7;7. Interactions Between ARs and Other GPCRs and Neurotrophic Factor Receptors;35
7.8;8. AR Functions: Insights from Pharmacological and Genetic-KO Approaches;36
7.8.1;8.1. AR modulation of neuronal excitability by presynaptic and postsynaptic mechanisms;37
7.8.2;8.2. AR modulation of synaptic plasticity;38
7.8.3;8.3. AR control of learning and memory;39
7.8.4;8.4. ARs control of sleep-wake cycle;39
7.8.5;8.5. A2AR control of motor and psychomotor activities;40
7.8.6;8.6. Adenoisne receptor control of anxiety, aggression, and depression;41
7.8.7;8.7. AR control of angiogenesis;42
7.8.8;8.8. AR control of cerebral blood flow and blood-brain barrier integrity;42
7.9;9. ARs and Glial Functions;43
7.9.1;9.1. Glial control of adenosine homeostasis;43
7.9.2;9.2. Glial ARs;43
7.10;10. Pathophysiological Functions of ARs;44
7.11;11. ARs as Drug Targets;46
7.12;Acknowledgments;47
7.13;References;47
7.14;Further Reading;66
8;Chapter Two: Adenosine Receptor PET Imaging in Human Brain;68
8.1;1. Introduction;68
8.2;2. PET Imaging of Adenosine A1 Receptors;72
8.2.1;2.1. PET ligands for adenosine A1 receptors;72
8.2.2;2.2. Adenosine A1 receptors in normal subjects;73
8.2.3;2.3. Adenosine A1 receptors in brain diseases;74
8.3;3. PET Imaging of Adenosine A2A Receptors;76
8.3.1;3.1. Ligands for adenosine A2A receptors;76
8.3.2;3.2. Adenosine A2A receptors in normal subjects;77
8.3.3;3.3. Adenosine A2A receptors in brain diseases;78
8.4;4. Conclusions;80
8.5;References;80
9;Chapter Three: An Overview of Adenosine A2A Receptor Antagonists in Parkinson´s Disease;88
9.1;1. Problems in the Treatment of Parkinson´s Disease;89
9.2;2. Non-dopaminergic Approaches to the Treatment of PD;90
9.3;3. Adenosine A2A Receptor Antagonists and Motor Function;91
9.3.1;3.1. Improvement in motor disability;92
9.3.2;3.2. Improved motor function without dyskinesia;93
9.4;4. Adenosine A2A Receptor Antagonists and Nonmotor Symptoms of PD;94
9.5;5. A2A Adenosine Receptor Antagonists and Neuroprotection in PD;95
9.6;6. A2A Receptor Antagonists and Clinical Outcomes in PD;96
9.7;7. Conclusions;99
9.8;References;100
10;Chapter Four: Mode of Action of Adenosine A2A Receptor Antagonists as Symptomatic Treatment for Parkinson´s Disease;104
10.1;1. Introduction;105
10.2;2. The Basal Ganglia-Thalamocortical Circuit and Pathophysiology of PD;105
10.3;3. Striatal MSNs;107
10.4;4. Localization of Adenosine A2A Receptors On/Around Striatal MSNs;108
10.4.1;4.1. Regional and cellular anatomy of adenosine A2A receptors;108
10.4.2;4.2. Ultrastructural aspect of adenosine A2A receptors;109
10.5;5. Proposed Mechanism of Adenosine A2A Receptor Function and Mode of Action of A2A Receptor Antagonists on Motor Control ...;110
10.5.1;5.1. A2A receptor-induced dual excitatory modulation of striatopallidal GABAergic system;110
10.5.1.1;5.1.1. The A2A receptor-mediated modulation of MSNs in the striatum;111
10.5.1.2;5.1.2. The A2A receptor-mediated modulation in the GP;112
10.5.1.3;5.1.3. The A2A receptor-mediated modulation of the output from the entire striatopallidal pathway;113
10.5.1.4;5.1.4. Models for the synaptic connection of MSNs affected by presynaptic A2A receptor modulation;116
10.5.1.5;5.1.5. Physiological consideration of the A2A receptor-mediated dual excitatory modulation of the striatopallidal pathway...;118
10.5.2;5.2. Functional/physiological interaction hypotheses of adenosine A2A receptors with other receptors;119
10.5.2.1;5.2.1. Interaction with dopamine D2 receptors;120
10.5.2.2;5.2.2. Synergistic interaction of A2A receptors with metabotropic glutamate receptors;121
10.5.2.3;5.2.3. A2A receptor-related modulations of ACh system in the striatum;122
10.5.2.4;5.2.4. Presynaptic A2A-A1 receptor interaction;123
10.6;6. New Aspect for the Pathophysiological Change to Striatopallidal MSNs in PD;123
10.7;7. Concluding Remarks;125
10.8;References;126
11;Chapter Five: Adenosine Receptors and Dyskinesia in Pathophysiology;134
11.1;1. Pathogenesis of Levodopa-Induced Dyskinesia;134
11.2;2. Adenosine A2A Receptors and Levodopa-Induced Dyskinesia;136
11.3;References;139
12;Chapter Six: Clinical/Pharmacological Aspect of Adenosine A2A Receptor Antagonist for Dyskinesia;144
12.1;1. Introduction;145
12.2;2. Nonclinical Studies of the Effects of Adenosine A2A Receptor Antagonists on Dyskinesia;147
12.2.1;2.1. The effects of adenosine A2A receptor antagonism in 6-OHDA-lesioned hemiparkinsonian rodents;147
12.2.2;2.2. Adenosine A2A receeptor antagonism in nonhuman primate models of dyskinesia;151
12.3;3. Clinical Outcomes of Adenosine A2A Receptor Antagonist on Dyskinesia;155
12.4;4. Comparison Between Nonclinical and Clinical Findings on Adenosine A2A Receptor Blockade and Dyskinesia;161
12.5;5. Conclusions;164
12.6;References;164
13;Chapter Seven: Interaction of Adenosine Receptors with Other Receptors from Therapeutic Perspective in Parkinson´s Disease;168
13.1;1. Introduction;169
13.2;2. Adenosine Receptors in the Basal Ganglia and Signal Transduction;171
13.2.1;2.1. Localization, organization, and functioning of A1 adenosine receptor subtype;172
13.2.2;2.2. Localization, organization, and functioning of A2A adenosine receptor subtype;172
13.3;3. A1 and A2A Adenosine Receptor Interactions and Heterodimerization;174
13.4;4. Adenosine and Dopamine Receptor Interactions and Heterodimerization;175
13.4.1;4.1. A1 adenosine receptor subtype;175
13.4.2;4.2. A2A adenosine receptor subtype;175
13.5;5. Adenosine and Glutamate Receptor Interactions and Heterodimerization;176
13.5.1;5.1. A1 adenosine receptor subtype;176
13.5.2;5.2. A2A adenosine receptor subtype;176
13.6;6. Discussion;177
13.7;7. Conclusion;178
13.8;Acknowledgments;179
13.9;References;179
14;Chapter Eight: Effects of the Adenosine A2A Receptor Antagonist on Cognitive Dysfunction in Parkinson´s Disease;186
14.1;1. Introduction;187
14.2;2. Cognitive Dysfunction in PD;188
14.2.1;2.1. Epidemiology;188
14.2.2;2.2. Risk factors;189
14.2.3;2.3. Clinical features;190
14.2.4;2.4. Neuropathology;191
14.2.5;2.5. Biomarkers;193
14.2.6;2.6. Treatment;194
14.3;3. The Role of Adenosine A2A Receptors on Cognitive Function;196
14.4;4. Effects of Adenosine A2A Receptor Antagonists on Cognitive Dysfunction in PD;196
14.4.1;4.1. Animal studies;196
14.4.2;4.2. Mechanism of action;199
14.5;5. Conclusion;201
14.6;References;202
15;Chapter Nine: Clinical Nonmotor Aspect of A2A Antagonist in PD Treatment;208
15.1;1. Introduction;208
15.2;2. Case Report;209
15.2.1;2.1. Case 1;209
15.2.2;2.2. Case 2;209
15.2.3;2.3. Case 3;210
15.3;3. Discussion;210
15.4;4. Conclusion;210
15.5;References;210
16;Chapter Ten: Adenosine Receptors and Huntington´s Disease;212
16.1;1. Pathogenetic Mechanisms of Huntington´s Disease;213
16.1.1;1.1. Mitochondria and metabolic defects;213
16.1.2;1.2. Deficiency of the brain-derived neurotrophic factor;214
16.1.3;1.3. Two major protein degradation systems: Proteasome and autophagy;214
16.1.4;1.4. Excitotoxicity;215
16.1.5;1.5. Nonneuronal and peripheral cells;215
16.2;2. Alteration in Adenosine Homeostasis in HD;216
16.3;3. Regulation of Adenosine Receptors in HD;219
16.3.1;3.1. Biphasic regulation of A1R during HD progression;219
16.3.2;3.2. Downregulation of A2AR during HD progression;224
16.3.3;3.3. Amplification of A2AR signaling during HD progression;225
16.4;4. Therapeutic Actions of Adenosine Receptor Agonists and Antagonists in HD;226
16.4.1;4.1. A1R activation and A2AR blockage are beneficial in chemical- and lesion-induced HD models;226
16.4.2;4.2. A2AR activation elicits beneficial effects in genetic HD mouse models;230
16.4.3;4.3. A2AR receptor dimers as novel drug targets for HD;236
16.5;5. Positron Emission Tomography Imaging for Adenosine Receptor Occupancy in HD;236
16.6;6. Concluding Remarks;237
16.7;Acknowledgments;237
16.8;References;238
17;Chapter Eleven: Adenosine Receptors and Epilepsy: Current Evidence and Future Potential;250
17.1;1. Introduction;250
17.2;2. Adenosine Regulates Ongoing Neurotransmission;252
17.3;3. Adenosine Receptor Subtypes and Epilepsy;253
17.4;4. Chronic Changes in Adenosine Receptor Activation;256
17.5;5. Gliosis, Adenosine Kinase, and Epileptogenesis;257
17.6;6. Human Adenosine Receptor Polymorphisms;257
17.7;7. Adenosine and Neuroinflammation;258
17.8;8. Adenosine-Based Mechanisms Underlying Anticonvulsant Diet Therapy;259
17.9;9. Conclusions;261
17.10;References;262
18;Chapter Twelve: Adenosine Receptor Control of Cognition in Normal and Disease;274
18.1;1. Adenosine as an Upstream Regulator of Dopamine, Glutamate, and Brain-Derived Neurotrophic Factor Signaling: A Molecula...;275
18.1.1;1.1. Adenosine A1 receptor;276
18.1.2;1.2. Adenosine A2A receptor;277
18.2;2. Adenosine Receptor Modulation of Synaptic Plasticity: A Cellular Basis for AR Control of Cognition;279
18.2.1;2.1. A1 receptor modulation of synaptic plasticity;280
18.2.2;2.2. A2A receptor modulation of synaptic plasticity;281
18.2.3;2.3. A3 receptor modulation of synaptic plasticity;283
18.3;3. Adenosine Receptor Modulates Learning and Memory in Normal Animals;284
18.3.1;3.1. Adenosine levels by ENT-1, ADK, and CD73 and learning and memory;284
18.3.2;3.2. A1 receptors and learning and memory;285
18.3.3;3.3. A2A receptors and learning and memory;286
18.3.3.1;3.3.1. Effort-related behavior;289
18.3.3.2;3.3.2. Conditional temporal probability;289
18.3.3.3;3.3.3. Selective inactivation of striatal A2ARs alone was sufficient to reproduce the procognitive phenotypes;289
18.3.4;3.4. A3 and A2B receptors and learning and memory;290
18.3.4.1;3.4.1. Complexity of AR control of cognition;290
18.4;4. Adenosine Receptor Control of Cognition in Neuropsychiatric Disorders;291
18.4.1;4.1. Alzheimer´s disease;292
18.4.1.1;4.1.1. Human caffeine consumption and cognitive decline in aging and AD;294
18.4.2;4.2. Parkinson´s disease;296
18.4.2.1;4.2.1. Human caffeine consumption and PD;298
18.4.3;4.3. Huntington´s disease;299
18.4.4;4.4. Schizophrenia;301
18.5;5. Concluding Remarks;304
18.6;Acknowledgments;305
18.7;References;305
18.8;Further Reading;324
19;Chapter Thirteen: Adenosine Receptors in Cerebral Ischemia;326
19.1;1. Introduction;327
19.2;2. A1 Receptors in Brain Ischemia;329
19.3;3. A2A Receptors in Brain Ischemia;334
19.3.1;3.1. A2A receptor antagonism is protective against ischemic brain injury;334
19.3.1.1;3.1.1. A2A receptor antagonism protect from excitotoxicity;335
19.3.1.2;3.1.2. A2A receptor antagonism protects from intracellular messenger activation;338
19.3.2;3.2. A2A receptor agonism is protective against ischemic brain injury;340
19.3.3;3.3. A2A-receptor-based protection in ischemia?;342
19.4;4. A2B Receptors in Brain Ischemia;343
19.5;5. A3 Receptors in Brain Ischemia;345
19.5.1;5.1. A3 receptor-based protection in ischemia?;349
19.6;6. Conclusions;349
19.7;References;349
20;Chapter Fourteen: Roles of Adenosine and Its Receptors in Sleep-Wake Regulation;366
20.1;1. Introduction;368
20.2;2. Formation, Metabolism, and Transport of Adenosine in the Central Nervous System;368
20.3;3. Adenosine Is a Key Signaling Molecule for PGD2-Induced Sleep;370
20.4;4. An Increase in the Extracellular Adenosine Level Promotes Sleep;372
20.5;5. Predominant Roles of A2A Receptor in Sleep Regulation;374
20.6;6. The Involvement of A2A Receptor in the NAc in Sleep-Wake Regulation;378
20.7;7. A1 Receptors Contribute to Sleep Induction in a Region-Dependent Manner;380
20.8;8. Conclusions;382
20.9;Acknowledgments;383
20.10;References;383
21;Chapter Fifteen: Involvement of Adenosine A2A Receptors in Depression and Anxiety;390
21.1;1. Introduction;391
21.2;2. Adenosine Receptors and Anxiety;391
21.2.1;2.1. Adenosine receptors and anxiety in humans;391
21.2.1.1;2.1.1. Effects of coffee;391
21.2.1.2;2.1.2. Genetic polymorphism;392
21.2.2;2.2. Adenosine receptors and anxiety-like behaviors in animals;393
21.2.2.1;2.2.1. Effects of nonselective modulation of adenosine receptors;393
21.2.2.2;2.2.2. Effects of genetical manipulations of adenosine A2A receptors;394
21.2.2.3;2.2.3. Effects of pharmacological modulation of adenosine A2A receptors;395
21.3;3. Adenosine Receptors and Depression;397
21.3.1;3.1. Adenosine receptors and depression in humans;397
21.3.1.1;3.1.1. Effect of caffeine;397
21.3.2;3.2. Adenosine receptors and depression-like behaviors in animals;398
21.3.2.1;3.2.1. Effect of nonselective pharmacological modulation of adenosine receptors;398
21.3.2.2;3.2.2. Effects of genetical manipulations of adenosine A2A receptors;399
21.3.2.3;3.2.3. Effects of pharmacological inhibition of adenosine A2A receptors;399
21.4;4. Mechanisms of Actions After the Blockade of Adenosine A2A Receptors;401
21.4.1;4.1. Sites of the actions;401
21.4.2;4.2. Interaction between dopamine D2 receptors and adenosine A2A receptors;402
21.4.3;4.3. Monoaminergic neurotransmitters;402
21.4.4;4.4. The HPA axis;403
21.4.5;4.5. Brain-derived neurotrophic factor;404
21.5;5. Conclusion;404
21.6;References;405
22;Chapter Sixteen: The Adenosine Neuromodulation System in Schizophrenia;412
22.1;1. Clinical Features of Schizophrenia;413
22.1.1;1.1. Neurodevelopmental basis of schizophrenia;414
22.1.2;1.2. Therapeutic management of schizophrenia;415
22.2;2. Morphological and Neurochemical Features of Schizophrenia;416
22.2.1;2.1. Synaptic changes in schizophrenia;416
22.2.2;2.2. Glia changes;418
22.2.3;2.3. Main neurotransmitter systems affected in schizophrenia;420
22.2.3.1;2.3.1. Dopamine;421
22.2.3.2;2.3.2. Glutamate;422
22.2.3.3;2.3.3. GABA;423
22.3;3. The Adenosine Neuromodulation System;424
22.3.1;3.1. Adenosine and dopamine;426
22.3.2;3.2. Adenosine and glutamatergic synaptic functions;428
22.3.3;3.3. Adenosine and glial cells;429
22.3.4;3.4. Adenosine and brain maturation;431
22.4;4. Impact of Manipulating the Adenosine System in Animal Models of Schizophrenia;433
22.4.1;4.1. Behavioral sensitization;434
22.4.2;4.2. Startle;435
22.4.3;4.3. Memory;436
22.5;5. Impact of Caffeine and Other Drugs Acting on the Adenosine Modulation System in Schizophrenic Patients;437
22.5.1;5.1. Modification of the adenosine neuromodulation system in schizophrenia;439
22.6;6. Proposed Adenosine Hypothesis of Schizophrenia;441
22.7;Acknowledgments;442
22.8;References;442
23;Index;468
24;Contents of Recent Volumes;480