E-Book, Englisch, Band 608, 416 Seiten, eBook
Reihe: The Springer International Series in Engineering and Computer Science
Motoda Instance Selection and Construction for Data Mining
2001
ISBN: 978-1-4757-3359-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 608, 416 Seiten, eBook
Reihe: The Springer International Series in Engineering and Computer Science
ISBN: 978-1-4757-3359-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
One of the major means of instance selection is sampling whereby a sample is selected for testing and analysis, and randomness is a key element in the process. Instance selection also covers methods that require search. Examples can be found in density estimation (finding the representative instances - data points - for a cluster); boundary hunting (finding the critical instances to form boundaries to differentiate data points of different classes); and data squashing (producing weighted new data with equivalent sufficient statistics). Other important issues related to instance selection extend to unwanted precision, focusing, concept drifts, noise/outlier removal, data smoothing, etc.
brings researchers and practitioners together to report new developments and applications, to share hard-learned experiences in order to avoid similar pitfalls, and to shed light on the future development of instance selection. This volume serves as a comprehensive reference for graduate students, practitioners and researchers in KDD.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Foreword; R.S. Michalski. Preface. Acknowledgments. Contributing Authors. Part I: Background and Foundation. 1. Data Reduction via Instance Selection; H. Liu, H. Motoda. 2. Sampling: Knowing Whole from its Part; B. Gu, et al. 3. A Unifying View on Instance Selection; T. Reinartz. Part II: Instance Selection Methods. 4. Competence Guided Instance Selection for Case-Based Reasoning; B. Smyth, E. McKenna. 5. Identifying Competence-Critical Instances for Instance-Based Learners; H. Brighton, C. Mellish. 6. Genetic-Algorithm-Based Instance and Feature Selection; H. Ishibuchi, et al. 7. The Landmark Model: An Instance Selection Method for Time Series Data; C.-S. Perng, et al. Part III: Use of Sampling Methods. 8. Adaptive Sampling Methods for Scaling Up Knowledge Discovery Algorithms; C. Domingo, et al. 9. Progressive Sampling; F. Provost, et al. 10. Sampling Strategy for Building Decision Trees from Very Large Databases Comprising Many Continuous Attributes; J.-H. Chauchat, R. Rakotomalala. 11. Incremental Classification Using Tree-Based Sampling for Large Data; H. Yoon, et al. Part IV: Unconventional Methods. 12. Instance Construction via Likelihood-Based Data Squashing; D. Madigan, et al. 13. Learning via Prototype Generation and Filtering; W. Lam, et al. 14. Instance Selection Based on Hypertuples; >H. Wang. 15. KBIS: Using Domain Knowledge to Guide Instance Selection; P. Wright, J. Hodges. Part V: Instance Selection in Model Combination. 16.Instance Sampling for Boosted and Standalone Nearest Neighbor Classifiers; D.B. Skalak. 17. Prototype Selection Using Boosted Nearest-Neighbors; R. Nock, M. Sebban. 18. DAGGER: Instance Selection for Combining Multiple Models Learnt from Disjoint Subsets; W. Davies, P. Edwards. Part VI: Applications of Instance Selection. 19. Using Genetic Algorithms for Training Data Selection in RBF Networks; C.R. Reeves, D.R. Bush. 20. An Active Learning Formulation for Instance Selection with Applications to Object Detection; K.-K. Sung, P. Niyogi. 21. Filtering Noisy Instances and Outliers; D. Gamberger, N. Lavrač. 22. Instance Selection Based on Support Vector Machine; S. Sugaya, et al. Index.




