E-Book, Englisch, 336 Seiten, Web PDF
Nicholls / Møller / Jørgensen Membrane Proteins
1. Auflage 2014
ISBN: 978-1-4831-8835-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
FEBS Federation of European Biochemical Societies: 11th Meeting, Copenhagen, 1977
E-Book, Englisch, 336 Seiten, Web PDF
ISBN: 978-1-4831-8835-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Membrane Proteins contains the proceedings of the 11th Meeting of the Federation of European Biochemical Societies, held in Copenhagen, Denmark in 1977. The meeting provided a forum for discussing progress that has been made in understanding membrane proteins. Topics covered range from hydrogen and electron transfer in mitochondria to energy-transferring systems as well as ATPases and hormone receptors. Comprised of 31 chapters, this volume begins by reporting the results of a study that examined the state of association of several important membrane proteins. The discussion then turns to future prospects for membrane structures; hydrogen and electron transfer in mitochondria; and the molecular mechanism of the respiratory chain proton pump. Subsequent chapters explore energy coupling in reconstituted segments of the respiratory chain; retinal-protein interaction in bacteriorhodopsin; the functional significance of protein-protein interactions in the sarcoplasmic reticulum; and the role of calcium in the action of insulin. This book will be of interest to biochemists.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover ;1
2;Membrane Proteins;4
3;Copyright Page
;5
4;Table of Contents
;6
5;GENERAL INTRODUCTION TO THE PROCEEDINGS;10
6;SECTION 1: Introductory Lectures;12
6.1;CHAPTER 1. STATE OF AGGREGATION OF MEMBRANE PROTEINS;14
6.1.1;ABSTRACT;14
6.1.2;INTRODUCTION;14
6.1.3;CHOICE OF DETERGENT;14
6.1.4;REQUIREMENT FOR MEMBRANE PHOSPHOLIPIDS;17
6.1.5;RESULTS;17
6.1.6;CONCLUSIONS;21
6.1.7;ACKNOWLEDGMENT;21
6.1.8;REFERENCES;21
6.2;CHAPTER 2. MEMBRANE STRUCTURE: NOW AND FUTURE PROSPECTS;24
6.2.1;Lipid Asymmetry;24
6.2.2;Membrane Proteins;24
6.2.3;Carbohydrate;25
6.2.4;Membrane Biosynthesis;25
6.2.5;Future Prospects;26
6.2.6;Lipids;26
6.2.7;Carbohydrates;26
6.3;CHAPTER 3. HYDROGEN AND ELECTRON TRANSFER IN MITOCHONDRIA;28
6.3.1;COMPONENTS;29
6.3.2;COMPLEXES;33
6.3.3;SEQUENCE;36
6.3.4;MECHANISMS;37
6.3.5;REFERENCES;40
7;SECTION 2: Energy Transferring Systems;44
7.1;INTRODUCTION;46
7.2;CHAPTER 4. ON THE MOLECULAR MECHANISM OF THE RESPIRATORY CHAIN PROTON PUMP. RESOLUTION AND CHARACTERIZATION OF INDIVIDUAL PROTON TRANSLOCATION
REACTIONS;48
7.2.1;REFERENCES;58
7.2.2;ADDENDUM;59
7.3;CHAPTER 5. THREE STAGES OF THE BACTERIORHODOPSIN-MEDIATED ELECTROGENESIS:
A SINGLE TURNOVER STUDY;60
7.3.1;SUMMARY;60
7.3.2;REFERENCES;69
7.4;CHAPTER 6. CYTOCHROME c OXIDASE: THE REACTION WITH OXYGEN;72
7.4.1;ABSTRACT;72
7.4.2;INTRODUCTION;72
7.4.3;THE SOLUBILIZED OXIDASE;73
7.4.4;SITE-SITE INTERACTIONS;75
7.4.5;THE REACTION WITH OXYGEN;76
7.4.6;REFERENCES;77
7.5;CHAPTER 7. CYTOCHROME C - CYTOCHROME OXIDASE INTERACTION
DURING ELECTRON TRANSFER;80
7.5.1;REFERENCES;88
7.6;CHAPTER 8. STUDIES OF ENERGY COUPLING IN RECONSTITUTED
SEGMENTS OF THE RESPIRATORY CHAIN;90
7.7;CHAPTER 9. FUNCTIONING OF CYTOCHROME £ OXIDASE IN THE MITOCHONDRIAL MEMBRANE
AND IN VESICLES;96
7.7.1;ABSTRACT;96
7.7.2;INTRODUCTION;96
7.7.3;THE CHEMIOSMOTIC VIEW;97
7.7.4;THE PROTON PUMP OF CYTOCHROME OXIDASE;98
7.7.5;THE RELATION BETWEEN PROTON TRANSPORT AND PROTON CONSUMPTION;100
7.7.6;PROPOSED STRUCTURE OF CYTOCHROME c OXIDASE;101
7.7.7;THE STRUCTURE AND ASSEMBLY OF THE SUBUNITS;102
7.7.8;TENTATIVE STRUCTURE OF PROTON PUMP;103
7.7.9;REFERENCES;104
7.8;CHAPTER 10. CONTROL OF CYTOCHROME £ OXIDASE ACTIVITY
IN RECONSTITUTED SYSTEMS;106
7.8.1;INTRODUCTION;106
7.8.2;METHODS;106
7.8.3;RESULTS;107
7.8.4;CONCLUSIONS;112
7.9;CHAPTER 11. RETINAL-PROTEIN INTERACTION IN BACTERIORHODOPSIN;116
7.9.1;INTRODUCTION;116
7.9.2;PROPERTIES OF THE PURPLE COMPLEX;117
7.9.3;RETINAL AND RETINOL COMPETE FOR THE BINDING SITE;117
7.9.4;VARIOUS CHROMOPHORE REDUCTION PRODUCTS CONTAIN
THE RETINYL MOIETY IN A PLANARIZED CONFORMATION;119
7.9.5;PROPERTIES OF SOME BACTERIORHODOPSIN CHROMOPHORES;124
7.9.6;CONCLUSION;127
7.9.7;REFERENCES;129
7.10;CHAPTER 12. FUNCTIONING OF THE MITOCHONDRIAL ATP-SYNTHESIZING MACHINERY;132
7.10.1;INTRODUCTION;132
7.10.2;EXPERIMENTAL;132
7.10.3;RESULTS AND DISCUSSION;134
7.10.4;MAGNITUDE OF .µ
+ IN SUBMITOCHONDRIAL PARTICLES;140
7.10.5;SUBMITOCHONDRIAL PARTICLES;140
7.10.6;RECONSTITUTED SYSTEMS;141
7.10.7;ACKNOWLEDGEMENTS;142
7.10.8;LITERATURE;142
8;SECTION 3. ATPases;144
8.1;CHAPTER 13. PROTEIN-PROTEIN INTERACTIONS IN SARCOPLASMIC RETICULUM: FUNCTIONAL
SIGNIFICANCE;146
8.1.1;ABSTRACT;146
8.1.2;RESULTS AND DISCUSSION;146
8.1.3;REFERENCES;150
8.2;CHAPTER 14. REASSEMBLY OF SARCOPLASMIC RETICULUM MEMBRANE;152
8.2.1;ABSTRACT;152
8.2.2;INTRODUCTION;152
8.2.3;PROPERTIES OF NATIVE SARCOPLASMIC RETICULUM VESICLES;152
8.2.4;SOLUBILIZATION OF SARCOPLASMIC RETICULUM MEMBRANE;153
8.2.5;REASSEMBLY OF SARCOPLASMIC RETICULUM MEMBRANE;153
8.2.6;ARRANGEMENT OF THE Ca2+ PUMP PROTEIN IN RECONSTITUTED MEMBRANES;155
8.2.7;ENZYMATIC PROPERTIES OF RECONSTITUTED VESICLES;156
8.2.8;CONCLUSION;158
8.2.9;ACKNOWLEDGEMENTS;158
8.2.10;REFERENCES;159
8.3;CHAPTER 15. THE CHEMISTRY OF THE CYSTEINE RESIDUES OF THE ATPase OF
SARCOPLASMIC RETICULUM;160
8.3.1;Topography of the ATPase;160
8.3.2;Distribution of Cysteine Residues among the Tryptic Fragments;160
8.3.3;Reactivity of the Thiol Groups;162
8.3.4;Dependence of Reactivity on Conformation;163
8.3.5;Clustering of Thiols in Tertiary and in Primary Structure;164
8.3.6;Cross-linking of the ATPase - Is it an Oligomer?;165
8.3.7;Problems for the Future;167
8.3.8;Acknowledgement;167
8.3.9;References;167
8.4;CHAPTER 16. ON THE PRIMARY STRUCTURE OF THE Ca2 +-ATPase
OF SARCOPLASMIC RETICULUM;170
8.4.1;INTRODUCTION;170
8.4.2;GENERAL PROPERTIES OF THE ATPase PROTEIN;170
8.4.3;STRATEGY FOR TOTAL SEQUENCE DETERMINATION;173
8.4.4;RESOLUTION OF PEPTIDES AGGREGATED IN AQUEOUS SOLUTION;176
8.4.5;RESULTS;177
8.5;CHAPTER 17. THE SODIUM AND POTASSIUM ION PUMP OR Na,
K-ATPase;180
8.5.1;REFERENCES;181
8.5.2;ULTRASTRUCTURE OF PURIFIED Na,
K-ATPase;184
8.5.3;INTRODUCTION;184
8.5.4;SURFACE PARTICLES;185
8.5.5;INTRAMEMBRANOUS PARTICLES;188
8.5.6;DISCUSSION;190
8.6;CHAPTER 18. CHARACTERIZATION OF THE LIPIDS INVOLVED IN THE (Na+ + K +)- AND
Ca2+-ACTIVATED ATPases IN THE HUMAN ERYTHROCYTE MEMBRANE BY USING HIGHLY PURIFIED PHOSPHOLIPASES;194
8.6.1;I THE LEVEL OF ATPase ACTIVITIES IN RED CELL GHOSTS TREATED
WITH HIGHLY PURIFIED PHOSPHOLIPASES;194
8.6.2;II RECONSTITUTION OF ATPase ACTIVITIES IN RBC GHOSTS;197
8.6.3;REFERENCES;200
8.7;CHAPTER 19. OUABAIN USED AS A TOOL FOR TRAPPING AND CHARACTERIZING PHOSPHORYLATION PRODUCTS
OF NaK-ATPase;202
8.7.1;ACKNOWLEDGEMENT;207
8.7.2;REFERENCES;208
8.8;CHAPTER 20. PHOSPHORYLATION KINETICS OF (Na+,K+)-ATPase;210
8.8.1;ABSTRACT;210
8.8.2;INTRODUCTION;210
8.8.3;MATERIALS AND METHODS;210
8.8.4;RESULTS AND DISCUSSION;211
8.8.5;REFERENCES;214
9;SECTION 4: Hormone Receptors;218
9.1;INTRODUCTION;220
9.2;Acknowledgements;220
9.3;References;220
9.4;CHAPTER 21. INSULIN-RECEPTOR BINDING IN ADIPOCYTES: Relation to glucose transport and to insulin degradation;222
9.4.1;BINDING;222
9.4.2;METHYLGLUCOSE TRANSPORT;225
9.4.3;IS DEGRADATION OF RECEPTOR BOUND INSULIN RELATED TO THE EFFECT OF
INSULIN ON GLUCOSE TRANSPORT?;226
9.4.4;CONCLUSION;228
9.4.5;REFERENCES;229
9.5;CHAPTER 22. INSULIN RECEPTORS: INTERPRETATION OF BINDING KINETICS AND REGULATION OF BINDING CAPACITY
IN VIVO;232
9.5.1;Interpretation of Binding Curves;232
9.5.2;In Vivo Peaulation of Insulin Finding;233
9.5.3;REFERENCES;237
9.6;CHAPTER 23. THE ROLE OF CALCIUM IN THE ACTION OF INSULIN;240
9.6.1;REFERENCES;247
9.7;CHAPTER 24. ANTIBODIES TO INSULIN RECEPTORS : PROBES OF RECEPTOR STRUCTURE
AND FUNCTION;250
9.7.1;ABSTRACT;250
9.7.2;INTRODUCTION;250
9.7.3;Clinical characteristics of patients;251
9.7.4;Insulin binding to patients monocytes;251
9.7.5;In vitro effects on binding to cultured lymphocytes;251
9.7.6;Evidence that the serum inhibitory factor is an immunoglobulin;252
9.7.7;Specificity of the partially purified immunoglobulin;253
9.7.8;Mechanism of immunoglobulin inhibition of the insulin receptor;253
9.7.9;Effect of immunoglobulin on target tissues of insulin;254
9.7.10;Comment;255
9.7.11;REFERENCES;257
9.8;CHAPTER 25. GLUCAGON AND PANCREATIC HORMONE III : X-RAY ANALYSIS,
CONFORMATION AND RECEPTOR BINDING;260
9.8.1;ABSTRACT;260
9.8.2;INTRODUCTION;260
9.8.3;THE CONFORMATION OF GLUCAGON;260
9.8.4;THE CONFORMATION OF PANCREATIC HORMONE III;263
9.8.5;THE MOLECULAR BIOLOGY OF GLUCAGON;266
9.8.6;ACKNOWLEDGEMENTS;268
9.8.7;REFERENCES;268
9.9;CHAPTER 26. ACTION OF SECRETIN AND VASOACTIVE INTESTINAL PEPTIDE (VIP)
ON THE ADENYLATE CYCLASE SYSTEM OF PANCREATIC ACINAR CELLS;270
9.9.1;ABSTRACT;270
9.9.2;INTRODUCTION;270
9.9.3;METHODOLOGY;271
9.9.4;SPECIFIC BINDING OF VIP AND SECRETIN IN DISPERSED GUINEA PIG
PANCREATIC ACINAR CELLS;272
9.9.5;THE REGULATORY SITE FOR NUCLEOTIDES IN RAT PANCREATIC PLASMA
MEMBRANES;276
9.9.6;THE ENVIRONMENT OF THE ADENYLATE CYCLASE SYSTEM;278
9.9.7;SWITCHING OFF MECHANISMS FOR INACTIVATING SIGNALS FROM THE
SECRETIN-VIP FAMILY;278
9.9.8;INTERACTION WITH OTHER GASTROINTESTINAL HORMONES;279
9.9.9;SPECIES DIFFERENCES;279
9.9.10;REFERENCES;280
9.10;CHAPTER 27. THE EXPRESSION OF CELL SURFACE RECEPTORS FOR VIP, SECRETIN AND GLUCAGON IN NORMAL AND TRANSFORMED CELLS
OF THE DIGESTIVE TRACT;282
9.10.1;Receptors for VIP, glucagon and secretin in liver;283
9.10.2;Effect of VIP and secretin on pancreatic plasma membranes and acinar cells;289
9.10.3;Effect of VIP and secretin on intestinal cells;290
9.10.4;VIP receptors in a human colonie carcinoma cell line (HT 29);293
9.10.5;Conclusion and summary;296
9.10.6;Acknowledgements;297
9.10.7;REFERENCES;297
9.11;CHAPTER 28. CELL TO CELL TRANSFER OF HORMONE RECEPTORS;302
9.11.1;ABSTRACT;302
9.11.2;INTRODUCTION;303
9.11.3;FINDINGS;304
9.11.4;DISCUSSION;307
9.11.5;REFERENCES;308
9.12;CHAPTER 29. ADENYLATE CYCLASE IN THE IMMATURE RAT OVARY:
INDUCTION OF RESPONSIVENESS TO LUTEINIZING HORMONE;310
9.12.1;INTRODUCTION;310
9.12.2;DISCUSSION;317
9.12.3;REFERENCES;318
9.13;CHAPTER 30. ANGIOTENSIN RECEPTORS;320
9.13.1;1.
Angiotensin-receptor interaction;321
9.13.2;2. Angiotensin III receptors in corticoadrenals;325
9.13.3;3. Angiotensin II receptor modulation;326
9.13.4;References;327
9.14;CHAPTER 31. THE STRUCTURAL BASIS OF INSULIN-RECEPTOR BINDING
AND COOPERATIVE INTERACTIONS;330
9.14.1;Acknowledgements;334
9.14.2;References;334
9.15;INDEX;336