E-Book, Englisch, 688 Seiten
Osswald / Menges Materials Science of Polymers for Engineers
1. Auflage 2012
ISBN: 978-1-56990-524-1
Verlag: Hanser Publications
Format: PDF
Kopierschutz: Wasserzeichen (»Systemvoraussetzungen)
E-Book, Englisch, 688 Seiten
ISBN: 978-1-56990-524-1
Verlag: Hanser Publications
Format: PDF
Kopierschutz: Wasserzeichen (»Systemvoraussetzungen)
This unified approach to polymer materials science is divided in three major sections:
- Basic Principles - covering historical background, basic material properties, molecular structure, and thermal properties of polymers.
- Influence of Processing on Properties - tying processing and design by discussing rheology of polymer melts, mixing and processing, the development of anisotropy, and solidification processes.
- Engineering Design Properties - covering the different properties that need to be considered when designing a polymer component - from mechanical properties to failure mechanisms, electrical properties, acoustic properties, and permeability of polymers.
A new chapter introducing polymers from a historical perspective not only makes the topic less dry, but also sheds light on the role polymers played, for better and worse, in shaping today's industrial world.
The first edition was praised for the vast number of graphs and data that can be used as a reference. A new table in the appendix containing material property graphs for several polymers further strengthens this attribute.
The most important change made to this edition is the introduction of real-world examples and a variety of problems at the end of each chapter.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface to the First Edition;8
2;Preface to the Third Edition;10
3;1 Introduction;24
3.1;1.1 The 6 P’s;24
3.2;1.2 General Information;27
3.3;1.3 Identification of Polymers;34
3.4;1.4 Sustainability – The 6th P;36
3.5;References;41
4;2 Historical Background;42
4.1;2.1 From Natural to Synthetic Rubber;42
4.2;2.2 Cellulose and the $10,000 Idea;48
4.3;2.3 Galalith – The Milk Stone;51
4.4;2.4 Leo Baekeland and the Plastics Industry;52
4.5;2.5 Herman Mark and the American
Polymer Education;55
4.6;2.6 Wallace Hume Carothers and
Synthetic Polymers;58
4.7;2.7 Polyethylene – A Product of Brain and Brawn;60
4.8;2.8 The Super Fiber and the Woman Who Invented It;63
4.9;2.9 One Last Word – Plastics;65
4.10;References;68
5;3 Structure of Polymers;70
5.1;3.1 Macromolecular Structure of Polymers;70
5.2;3.2 Molecular Bonds and Inter-Molecular Attraction;71
5.3;3.3 Molecular Weight;72
5.4;3.4 Conformation and Configuration of Polymer Molecules;77
5.5;3.5 Arrangement of Polymer Molecules;80
5.5.1;3.5.1 Thermoplastic Polymers;81
5.5.2;3.5.2 Amorphous Thermoplastics;81
5.5.3;3.5.3 Semi-Crystalline Thermoplastics;83
5.5.4;3.5.4 Thermosets and Cross-Linked Elastomers;93
5.6;3.6 Copolymers and Polymer Blends;94
5.7;3.7 Polymer Additives;96
5.7.1;3.7.1 Flame Retardants;96
5.7.2;3.7.2 Stabilizers;98
5.7.3;3.7.3 Antistatic Agents;99
5.7.4;3.7.4 Fillers;99
5.7.5;3.7.5 Blowing Agents;100
5.8;References;103
6;4 Thermal Properties of Polymers;104
6.1;4.1 Material Properties;106
6.1.1;4.1.1 Thermal Conductivity;106
6.1.2;4.1.2 Specific Heat;112
6.1.3;4.1.3 Density;114
6.1.4;4.1.4 Thermal Diffusivity;117
6.1.5;4.1.5 Linear Coefficient of Thermal Expansion;118
6.1.6;4.1.6 Thermal Penetration;119
6.1.7;4.1.7 Glass Transition Temperature;120
6.1.8;4.1.8 Melting Temperature;120
6.2;4.2 Measuring Thermal Data;120
6.2.1;4.2.1 Differential Thermal Analysis (DTA);121
6.2.2;4.2.2 Differential Scanning Calorimeter (DSC);122
6.2.3;4.2.3 Thermomechanical Analysis (TMA);124
6.2.4;4.2.4 Thermogravimetry (TGA);125
6.2.5;4.2.5 Density Measurements;126
6.3;References;130
7;5 Rheology of
Polymer Melts;132
7.1;5.1 Introduction;132
7.1.1;5.1.1 Continuum Mechanics;132
7.1.2;5.1.2 The Generalized Newtonian Fluid;134
7.1.3;5.1.3 Normal Stresses in Shear Flow;136
7.1.4;5.1.4 Deborah Number;137
7.2;5.2 Viscous Flow Models;140
7.2.1;5.2.1 The Power Law Model;140
7.2.2;5.2.2 The Bird-Carreau-Yasuda Model;142
7.2.3;5.2.3 The Bingham Fluid;143
7.2.4;5.2.4 Elongational Viscosity;143
7.2.5;5.2.5 Rheology of Curing Thermosets;146
7.2.6;5.2.6 Suspension Rheology;148
7.3;5.3 Simplified Flow Models Common in Polymer Processing;150
7.3.1;5.3.1 Simple Shear Flow;150
7.3.2;5.3.2 Pressure Flow Through a Slit;151
7.3.3;5.3.3 Pressure Flow through a Tube – Hagen-Poiseuille Flow;151
7.3.4;5.3.4 Couette Flow;152
7.4;5.4 Viscoelastic Flow Models;153
7.4.1;5.4.1 Differential Viscoelastic Models;153
7.4.2;5.4.2 Integral Viscoelastic Models;156
7.5;5.5 Rheometry;159
7.5.1;5.5.1 The Melt Flow Indexer;160
7.5.2;5.5.2 The Capillary Viscometer;160
7.5.3;5.5.3 Computing Viscosity Using the Bagley and
Weissenberg-Rabinowitsch Equations;162
7.5.4;5.5.4 Viscosity Approximation Using the Representative Viscosity Method;163
7.5.5;5.5.5 The Cone-Plate Rheometer;164
7.5.6;5.5.6 The Couette Rheometer;165
7.5.7;5.5.7 Extensional Rheometry;166
7.6;5.6 Surface Tension;169
7.7;References;178
8;6 Introduction to Processing;184
8.1;6.1 Extrusion;184
8.1.1;6.1.1 The Plasticating Extruder;187
8.1.1.1;6.1.1.1 The Solids Conveying Zone;189
8.1.1.2;6.1.1.2The Melting Zone;192
8.1.1.3;6.1.1.3 The Metering Zone;195
8.1.2;6.1.2 Extrusion Dies;196
8.1.2.1;6.1.2.1 Sheeting Dies;197
8.1.2.2;6.1.2.2 Tubular Dies;198
8.2;6.2 Mixing Processes;200
8.2.1;6.2.1 Distributive Mixing;202
8.2.1.1;6.2.1.1 Effect of Orientation;203
8.2.2;6.2.2 Dispersive Mixing;205
8.2.2.1;6.2.2.1 Break-Up of Particulate Agglomerates;205
8.2.2.2;6.2.2.2 Break-Up of Fluid Droplets;207
8.2.3;6.2.3 Mixing Devices;210
8.2.3.1;6.2.3.1Static Mixers;211
8.2.3.2;6.2.3.2Banbury Mixer;211
8.2.3.3;6.2.3.3 Mixing in Single Screw Extruders;213
8.2.3.4;6.2.3.4 Co-Kneader;215
8.2.3.5;6.2.3.5 Twin Screw Extruders;216
8.2.4;6.2.4 Energy Consumption During Mixing;219
8.2.5;6.2.5 Mixing Quality and Efficiency;220
8.2.6;6.2.6 Plasticization;222
8.3;6.3 Injection Molding;227
8.3.1;6.3.1 The Injection Molding Cycle;228
8.3.2;6.3.2 The Injection Molding Machine;231
8.3.2.1;6.3.2.1 The Plasticating and Injection Unit;231
8.3.2.2;6.3.2.2 The Clamping Unit;232
8.3.2.3;6.3.2.3 The Mold Cavity;234
8.4;6.4 Special Injection Molding Processes;237
8.4.1;6.4.1 Multi-Component Injection Molding;237
8.4.2;6.4.2 Co-Injection Molding;239
8.4.3;6.4.3 Gas-Assisted Injection Molding (GAIM);240
8.4.4;6.4.4 Injection-Compression Molding;242
8.4.5;6.4.5 Reaction Injection Molding (RIM);243
8.4.6;6.4.6 Liquid Silicone Rubber Injection Molding;246
8.5;6.5 Secondary Shaping;247
8.5.1;6.5.1 Fiber Spinning;247
8.5.2;6.5.2 Film Production;248
8.5.2.1;6.5.2.1 Cast Film Extrusion;248
8.5.2.2;6.5.2.2 Film Blowing;249
8.5.3;6.5.3 Blow Molding;251
8.5.3.1;6.5.3.1 Extrusion Blow Molding;251
8.5.3.2;6.5.3.2 Injection Blow Molding;253
8.5.3.3;6.5.3.3 Thermoforming;254
8.6;6.6 Calendering;256
8.7;6.7 Coating;259
8.8;6.8 Compression Molding;261
8.9;6.9 Foaming;263
8.10;6.10 Rotational Molding;265
8.11;6.11 Computer Simulation in Polymer Processing;266
8.11.1;6.11.1 Mold Filling Simulation;267
8.11.2;6.11.2 Orientation Predictions;269
8.11.3;6.11.3 Shrinkage and Warpage Predictions;270
8.12;References;281
9;7 Anisotropy Development During Processing;284
9.1;7.1 Orientation in the Final Part;284
9.1.1;7.1.1 Processing Thermoplastic Polymers;284
9.1.2;7.1.2 Processing Thermoset Polymers;292
9.2;7.2 Predicting Orientation in the Final Part;296
9.2.1;7.2.1 Planar Orientation Distribution Function;297
9.2.2;7.2.2 Single Particle Motion;299
9.2.3;7.2.3 Jeffery’s Model;300
9.2.4;7.2.4 Folgar-Tucker Model;301
9.2.5;7.2.5 Tensor Representation of Fiber Orientation;302
9.2.5.1;7.2.5.1 Predicting Orientation in Complex Parts Using Computer Simulation;303
9.3;7.3 Fiber Damage;308
9.4;References;314
10;8 Solidification of Polymers;316
10.1;8.1 Solidification of Thermoplastics;316
10.1.1;8.1.1 Thermodynamics During Cooling;316
10.1.2;8.1.2 Morphological Structure;320
10.1.3;8.1.3 Crystallization;321
10.1.4;8.1.4 Heat Transfer During Solidification;324
10.2;8.2 Solidification of Thermosets;328
10.2.1;8.2.1 Curing Reaction;329
10.2.2;8.2.2 Cure Kinetics;330
10.2.3;8.2.3 Heat Transfer During Cure;335
10.3;8.3 Residual Stresses and Warpage of Polymeric Parts;337
10.3.1;8.3.1 Residual Stress Models;340
10.3.1.1;8.3.1.1 Residual Stress Model Without Phase Change Effects;342
10.3.1.2;8.3.1.2 Model to Predict Residual Stresses with Phase Change Effects;343
10.3.2;8.3.2 Other Simple Models to Predict Residual Stresses and Warpage;345
10.3.2.1;8.3.2.1 Uneven Mold Temperature;347
10.3.2.2;8.3.2.2 Residual Stress in a Thin Thermoset Part;348
10.3.2.3;8.3.2.3 Anisotropy Induced Curvature Change;349
10.3.3;8.3.3 Predicting Warpage in Actual Parts;350
10.4;References;357
11;9 Mechanical Behavior of Polymers;362
11.1;9.1 Basic Concepts of Stress and Strain;362
11.1.1;9.1.1 Plane Stress;363
11.1.2;9.1.2 Plane Strain;364
11.2;9.2 Viscoelastic Behavior of Polymers;364
11.2.1;9.2.1 Stress Relaxation Test;365
11.2.2;9.2.2 Time-Temperature Superposition (WLF-Equation);367
11.2.3;9.2.3 The Boltzmann Superposition Principle;368
11.3;9.3 Applying Linear Viscoelasticity to Describe the Behavior of Polymers;369
11.3.1;9.3.1 The Maxwell Model;370
11.3.2;9.3.2 Kelvin Model;371
11.3.3;9.3.3 Jeffrey Model;373
11.3.4;9.3.4 Standard Linear Solid Model;375
11.3.5;9.3.5 The Generalized Maxwell Model;377
11.4;9.4 The Short-Term Tensile Test;382
11.4.1;9.4.1 Rubber Elasticity;383
11.4.2;9.4.2 The Tensile Test and Thermoplastic Polymers;388
11.5;9.5 Creep Test;395
11.5.1;9.5.1 Isochronous and Isometric Creep Plots;399
11.6;9.6 Dynamic Mechanical Tests;400
11.6.1;9.6.1 Torsion Pendulum;400
11.6.2;9.6.2 Sinusoidal Oscillatory Test;404
11.7;9.7 Effects of Structure and Composition on Mechanical Properties;406
11.7.1;9.7.1 Amorphous Thermoplastics;406
11.7.2;9.7.2 Semi-Crystalline Thermoplastics;409
11.7.3;9.7.3 Oriented Thermoplastics;411
11.7.4;9.7.4 Crosslinked Polymers;416
11.8;9.8 Mechanical Behavior of Filled and Reinforced Polymers;418
11.8.1;9.8.1 Anisotropic Strain-Stress Relation;420
11.8.2;9.8.2 Aligned Fiber Reinforced Composite Laminates;421
11.8.3;9.8.3 Transformation of Fiber Reinforced Composite Laminate Properties;423
11.8.4;9.8.4 Reinforced Composite Laminates with a Fiber Orientation Distribution Function;425
11.9;9.9 Strength Stability Under Heat;426
11.10;References;442
12;10 Failure and Damage of Polymers;444
12.1;10.1 Fracture Mechanics;444
12.1.1;10.1.1 Fracture Predictions Based on the Stress Intensity Factor;445
12.1.2;10.1.2 Fracture Predictions Based on an Energy Balance;447
12.1.3;10.1.3 Linear Viscoelastic Fracture Predictions Based on J-Integrals;449
12.2;10.2 Short-Term Tensile Strength;451
12.2.1;10.2.1 Brittle Failure;451
12.2.2;10.2.2 Ductile Failure;455
12.2.3;10.2.3 Failure of Highly Filled Systems or Composites;458
12.3;10.3 Impact Strength;461
12.3.1;10.3.1 Impact Test Methods;467
12.3.2;10.3.2 Fracture Mechanics Analysis of Impact Failure;471
12.4;10.4 Creep Rupture;476
12.4.1;10.4.1 Creep Rupture Tests;477
12.4.2;10.4.2 Fracture Mechanics Analysis of Creep Rupture;480
12.5;10.5 Fatigue;480
12.5.1;10.5.1 Fatigue Test Methods;481
12.5.2;10.5.2 Fracture Mechanics Analysis of Fatigue Failure;489
12.6;10.6 Friction and Wear;491
12.7;10.7 Stability of Polymer Structures;494
12.8;10.8 Environmental Effects on Polymer Failure;496
12.8.1;10.8.1 Weathering;496
12.8.2;10.8.2 Chemical Degradation;501
12.8.3;10.8.3 Thermal Degradation of Polymers;503
12.9;References;507
13;11 Electrical Properties of Polymers;510
13.1;11.1 Dielectric Behavior;510
13.1.1;11.1.1 Dielectric Coefficient;510
13.1.2;11.1.2 Mechanisms of Dielectrical Polarization;514
13.1.3;11.1.3 Dielectric Dissipation Factor;517
13.1.4;11.1.4 Implications of Electrical and Thermal Loss in a Dielectric;520
13.2;11.2 Electric Conductivity;521
13.2.1;11.2.1 Electric Resistance;521
13.2.2;11.2.2 Physical Causes of Volume Conductivity;522
13.3;11.3 Application Problems;525
13.3.1;11.3.1 Electric Breakdown;525
13.3.2;11.3.2 Electrostatic Charge;529
13.3.3;11.3.3 Electrets;530
13.3.4;11.3.4 Electromagnetic Interference Shielding (EMI Shielding);530
13.4;11.4 Magnetic Properties;531
13.4.1;11.4.1 Magnetizability;531
13.4.2;11.4.2 Magnetic Resonance;531
13.5;References;532
14;12 Optical Properties of Polymers;534
14.1;12.1 Index of Refraction;534
14.2;12.2 Photoelasticity and Birefringence;537
14.3;12.3 Transparency, Reflection, Absorption, and Transmittance;541
14.4;12.4 Gloss;547
14.5;12.5 Color;548
14.6;12.6 Infrared Spectroscopy;552
14.7;12.7 Infrared Pyrometry;553
14.8;12.8 Heating with Infrared Radiation;555
14.9;References;557
15;13 Permeability Properties of Polymers;558
15.1;13.1 Sorption;558
15.2;13.2 Diffusion and Permeation;560
15.3;13.3 Measuring S, D, and P;565
15.4;13.4 Corrosion of Polymers and Cracking [5];566
15.5;13.5 Diffusion of Polymer Molecules and Self-diffusion;569
15.6;References;569
16;14 Acoustic Properties of Polymers;570
16.1;14.1 Speed of Sound;570
16.2;14.2 Sound Reflection;572
16.3;14.3 Sound Absorption;573
16.4;References;574
17;Appendix;576
17.1;Appendix I;577
17.2;Appendix II;585
17.3;Appendix III;586
17.4;Appendix IV – Balance Equations;605
17.4.1;Continuity Equation;605
17.4.2;Energy Equation for a Newtonian Fluid;605
17.4.3;Momentum Balance;606
17.4.4;Momentum Equation in Terms of t;606
17.4.5;Navier-Stokes Equation;606
18;Index;608
Contents:
- Introduction to Polymers
- Historical Background
- Structure of Polymers
- Thermal Properties of Polymers
- Rheology of Polymer Melts
- Introduction to Processing
- Anisotropy Development During Processing
- Solidification of Polymers
- Mechanical Behavior of Polymers
- Failure and Damage of Polymers
- Electrical Properties of Polymers
- Optical Properties of Polymers
- Permeability Properties of Polymers
- Acoustic Properties of Polymers