P. M. / Semkin / O. | Nanotechnology in Electronics | Buch | 978-3-527-34673-8 | sack.de

Buch, Englisch, 384 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 652 g

P. M. / Semkin / O.

Nanotechnology in Electronics

Materials, Properties, Devices
1. Auflage 2022
ISBN: 978-3-527-34673-8
Verlag: WILEY-VCH

Materials, Properties, Devices

Buch, Englisch, 384 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 652 g

ISBN: 978-3-527-34673-8
Verlag: WILEY-VCH


Nanotechnology in Electronics

Enables readers to understand and apply state-of-the-art concepts surrounding modern nanotechnology in electronics

Nanotechnology in Electronics summarizes numerous research accomplishments in the field, covering novel materials for electronic applications (such as graphene, nanowires, and carbon nanotubes) and modern nanoelectronic devices (such as biosensors, optoelectronic devices, flexible electronics, nanoscale batteries, and nanogenerators) that are used in many different fields (such as sensor technology, energy generation, data storage and biomedicine).

Edited by four highly qualified researchers and professionals in the field, other specific sample topics covered in Nanotechnology in Electronics include: - Graphene-based nanoelectronics biosensors, including the history, properties, and fundamentals of graphene, plus fundamentals of graphene derivatives and the synthesis of graphene
- Zinc oxide piezoelectronic nanogenerators for low frequency applications, with an introduction to zinc oxide and zinc oxide piezoelectric nanogenerators
- Investigation of the hot junctionless mosfets, including an overview of the junctionless paradigm and a simulation framework of the hot carrier degradation
- Conductive nanomaterials for printed/flexible electronics application and metal oxide semiconductors for non-invasive diagnosis of breast cancer
- The fundamental aspects and applications of multiferroic-based spintronic devices and quartz tuning fork based nanosensors.

Containing in-depth information on the topic and written intentionally to help with the practical application of concepts described within, Nanotechnology in Electronics is a must-have reference for materials scientists, electronics engineers, and engineering scientists who wish to understand and harness the state of the art in the field.

P. M. / Semkin / O. Nanotechnology in Electronics jetzt bestellen!

Weitere Infos & Material


NANOTECHNOLOGY IN ELECTRONICS, MATERIALS PROPERTIES AND DEVICES: STATE OF ART AND CHALLENGES
Graphene-Based Nano-Electronics Biosensors
Zinc Oxide Piezoelectric Nanogenerators for Low-Frequency Applications
Investigation of the Hot Carrier Induced Degradation in Nanoscale Functionless MOSFETs: A Reliability-Based Analysis
Study of Electrostatic and Dispersion Forces in Nano-Electromechanical systems (NEMS)
Nanomaterials for Wearable, Flexible and Stretchable Strain/Pressure Sensors
Conductive Nanomaterials for Printed and Flexible Electronics Application
Metal Oxide Semiconductors for Non-Invasive Diagnosis of Breast Cancer
Down-Conversion Photoluminescence Properties of ZrO2:Ln3+ (Ln = Eu, Sm, Er, Tb, Ho, Tm, Pr, Gd, Dy) Films Formed by Plasma Electrolytic Oxidation
Multiferroics for Spintronics Applications
 
GRAPHENE-BASED NANOELECTRONICS BIOSENSORS
Introduction on Graphene
History of the Graphene
Properties of Graphene
Fundamentals of Graphene Derivatives
Synthesis of Graphene
Applications on Graphene-Based Biosensors
 
ZINC OXIDE PIEZOELECTRONIC NANOGENERATORS FOR LOW FREQUENZY APPLICATIONS
Introduction of Zinc Oxide
Introduction on Zinc Oxide Piezoelectric Nanogenerators
Zinc Oxide Piezoelectric Nanogenerators for Low Frequency Application
Conclusion
References
 
INVESTIGATION OF THE HOT JUNCTIONLESS MOSFETS: A RELIABILITY BASED ANALYSIS CARRIER INDUCED DEGRADATION IN NANOSCALE
Introduction
Overview of the Junctionless Paradigm
Simulation Framework of the Hot Carrier Degradation
Creation Process of the Interface Traps
Degradation of Performances Due to the Hot Carrier Effect
Hot Carrier Degradation in Digital Applications
Concluding Remarks
References
 
THE EFFECTS OF SYSTEM CONFIGURATION ON BEAM-BASED M/NEMS DEVICES
Introduction
Electrostatic Forces
Fringing Field Effects
Van der Waals Force
Casimir Force
Other Theories Related to the Casimir Force
Freestanding Phenomenon
Summary
References
 
NANOMATERIALS IN WEARABLE AND FLEXIBLE STRAIN/PRESSURE SENSORS
Introduction
Wearable Strain/Pressure Sensor
Applications
Conclusion and Outlook
References
 
CONDUCTIVE NANOMATERIALS FOR PRINTED AND FLEXIBLE ELECTRONICS APPLICATION
 
METAL OXIDE SEMICONDUCTORS FOR NON-INVASIVE DIAGNOSIS OF BREAST CANCER
 
DOWN-CONVERSION PHOTOLUMINESCENCE PROPERTIES OF ZrO2:Ln3+ (Ln = Eu, Sm, Er, Tb, Ho, Tm, Pr, Gd, Dy) FILMS FORMED BY PLASMA ELECTROLYTIC OXIDATION
Introduction
Experimental
Results and Discussion
CIE Chromaticity of ZrO2:Ln3+
Conclusion
 
MULTIFERROICS FOR SPINTRONICS APPLICATIONS
Magnetoelectric Multiferroic Materials
Spintronics
Spintronics Devices
Summary
 
QUARTZ TUNING FORM BASED NANOSENSORS
Introduction
Chemical Sensors
Quartz Tuning Forks (QTFs)
Early QTF Development
QTF as a Sensor
Conclusions


Dr. Visakh P.M. is Assistant Professor at Tomsk State University, Tomsk, Russia. His research areas are polymer science, polymer nanocomposites, materials sciences, bio-nanocomposites, rubber-based nanocomposites, fire-retardant polymers and liquid crystalline polymers and silicon sensors. He published 17 original papers, three reviews and more than 30 book chapters. He is the editor of more than 25 books.
 
Dr. Artem Semkin is research scientist in the Department of Microwave and Quantum Radio Engineering at Tomsk State University, Tomsk, Russia. His areas of research are polymer science, optics, photonics, photopolymers, liquid crystals, and photopolymeric and liquid-crystalline compositions.
 
Dr. B. Raneesh is Assistant Professor in the Department of Physics, Catholicate College, Pathanamthitta, Kerala, India. His current research interests include nanomultiferroics, metal oxide thin films, plasma science and electron microscopy. He has published many research articles in peer-reviewed journals and also co-edited two books.
 
Dr. Sasa Lazovic is Assistant Professor at the Institute of Physics Belgrade, Serbia. He is head of the Laboratory for Biomimetics since 2016 and has been leading the Innovation Center of the Institute of Physics Belgrade from 2014-2018. He has published more than 20 papers in international journals on plasma physics, materials science, and biophysics.
 



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.