Pal | Predictive Modeling of Drug Sensitivity | Buch | 978-0-12-805274-7 | www.sack.de

Buch, Englisch, 354 Seiten, Format (B × H): 192 mm x 234 mm, Gewicht: 750 g

Pal

Predictive Modeling of Drug Sensitivity


Erscheinungsjahr 2016
ISBN: 978-0-12-805274-7
Verlag: ACADEMIC PRESS

Buch, Englisch, 354 Seiten, Format (B × H): 192 mm x 234 mm, Gewicht: 750 g

ISBN: 978-0-12-805274-7
Verlag: ACADEMIC PRESS


Predictive Modeling of Drug Sensitivity gives an overview of drug sensitivity modeling for personalized medicine that includes data characterizations, modeling techniques, applications, and research challenges. It covers the major mathematical techniques used for modeling drug sensitivity, and includes the requisite biological knowledge to guide a user to apply the mathematical tools in different biological scenarios.

This book is an ideal reference for computer scientists, engineers, computational biologists, and mathematicians who want to understand and apply multiple approaches and methods to drug sensitivity modeling. The reader will learn a broad range of mathematical and computational techniques applied to the modeling of drug sensitivity, biological concepts, and measurement techniques crucial to drug sensitivity modeling, how to design a combination of drugs under different constraints, and the applications of drug sensitivity prediction methodologies.

Pal Predictive Modeling of Drug Sensitivity jetzt bestellen!

Zielgruppe


<p>Computer scientists, engineers, computational biologists, and mathematicians</p>


Autoren/Hrsg.


Weitere Infos & Material


1: Introduction2: Data characterization3: Feature selection and extraction from heterogeneous genomic characterizations4: Validation methodologies5: Tumor growth models6: Overview of predictive modeling based on genomic characterizations7: Predictive modeling based on random forests8: Predictive modeling based on multivariate random forests9: Predictive modeling based on functional and genomic characterizations10: Inference of dynamic biological networks based on perturbation data11: Combination therapeutics12: Online resources13: Challenges


Pal, Ranadip
Ranadip Pal is an associate professor in the Electrical and Computer Engineering Department, at the Texas Tech University, USA. His research areas are stochastic modeling and control, genomic signal processing, and computational biology. He is the author of more than 60 peer-reviewed articles including publications in high impact journals such as Nature Medicine and Cancer Cell. He has contributed extensively to robustness analysis of genetic regulatory networks and predictive modeling of drug sensitivity. His research group was a top performer in NCI supported drug sensitivity prediction challenge.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.